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Studies investigating the neural bases of cognitive
phenomena increasingly employ multialternative
detection tasks that seek to measure the ability to
detect a target stimulus or changes in some target
feature (e.g., orientation or direction of motion) that
could occur at one of many locations. In such tasks, it is
essential to distinguish the behavioral and neural
correlates of enhanced perceptual sensitivity from those
of increased bias for a particular location or choice
(choice bias). However, making such a distinction is not
possible with established approaches. We present a new
signal detection model that decouples the behavioral
effects of choice bias from those of perceptual sensitivity
in multialternative (change) detection tasks. By
formulating the perceptual decision in a
multidimensional decision space, our model quantifies
the respective contributions of bias and sensitivity to
multialternative behavioral choices. With a combination
of analytical and numerical approaches, we demonstrate
an optimal, one-to-one mapping between model
parameters and choice probabilities even for tasks
involving arbitrarily large numbers of alternatives. We
validated the model with published data from two
ternary choice experiments: a target-detection
experiment and a length-discrimination experiment. The
results of this validation provided novel insights into
perceptual processes (sensory noise and competitive
interactions) that can accurately and parsimoniously
account for observers’ behavior in each task. The model
will find important application in identifying and

interpreting the effects of behavioral manipulations
(e.g., cueing attention) or neural perturbations (e.g.,
stimulation or inactivation) in a variety of
multialternative tasks of perception, attention, and
decision-making.

Introduction

Decisions in the real world involve making a
categorical judgment or choice based on careful
evaluation of noisy sensory evidence. In addition to
sensory evidence, behavioral biases contribute impor-
tantly to the decision-making process (Gold, Law,
Connolly, & Bennur, 2008; Gold & Shadlen, 2007;
Macmillan & Creelman, 2005). Biases may reflect an
innate preference for a specific choice that manifests,
for instance, as an idiosyncratic tendency for selecting
one choice among many equally likely alternatives
(Gold et al., 2008; Klein, 2001). Conversely, biases may
be rapidly and reversibly induced with specific task
manipulations. For instance, cueing the location of an
upcoming stimulus, either explicitly with a spatial cue
or implicitly by temporarily increasing the frequency of
presentation at a particular location, can result in the
observer (human or animal) developing a bias for
selecting that location over other locations in the time
span of a few trials (Carpenter & Williams, 1995;
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Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011;
Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann,
2012). Systematic biases for specific choices (‘‘choice
biases’’) confound the ability to evaluate the observer’s
sensitivity to sensory evidence. Hence, in studies of
human and animal behavior, much effort is invested in
the careful development of experimental designs and
training protocols that minimize or train away biases
although this approach may not always be practical.

Theoretical frameworks provide a complementary
approach to accounting for choice bias: They quantify
it. Such frameworks are based on a testable model of
the decision-making process and permit principled,
quantitative estimation of the contribution of choice
bias to the observer’s responses. Among such theoret-
ical frameworks, signal detection theory (SDT) is a
simple, but powerful, decision-making framework that
accounts for choice bias in binary choice tasks, such as
the two-alternative forced choice (2-AFC) or Yes/No
detection tasks (Green & Swets, 1966; Macmillan &
Creelman, 2005).

In binary choice Yes/No tasks, the experimenter
seeks to measure an observer’s perceptual sensitivity to
detect a target stimulus at a particular location or to
detect a target stimulus feature in the display. The
observer is presented with a series of behavioral trials:
The stimulus (or stimulus feature) is presented at a
given location on a random subset of these trials and is
absent in others. When the observer detects the
stimulus, she/he reports it with a ‘‘Yes’’ response;
otherwise, she/he reports a ‘‘No’’ response.

SDT models the observer’s perceptual decision in
this binary choice (simple) detection task as the
outcome of an inherently noisy process. In the SDT
framework for the binary choice (Yes/No) task, the
observer decides between the two, mutually exclusive
events (was the stimulus present or not?) by weighing
the relative strength of evidence for each. The decision
is based on a latent random variable, the decision
variable, whose mean depends on the strength of the
stimulus and whose variance arises from the noisiness
of the sensory evidence across trials (Green & Swets,
1966). In trials in which the decision variable exceeds a
cutoff value, the observer reports having detected the
stimulus (‘‘Yes’’).

The cutoff value or ‘‘choice criterion’’ represents the
observer’s bias for choosing to report detection over no
detection. When the observer is highly biased toward
the ‘‘Yes’’ choice, she/he adopts a low value for the
choice criterion, which manifests as a tendency to
report having detected the stimulus even when no
stimulus was presented (a high rate of ‘‘false alarms’’).
Conversely, when the observer is highly biased toward
the ‘‘No’’ choice, she/he adopts a high criterion, which
manifests as a conservative tendency to not report
detection even in trials when the stimulus was presented

(a high rate of ‘‘misses’’). Having accounted for bias,
the observer’s ‘‘perceptual sensitivity’’ to detect the
stimulus, an indicator of the strength of the perceived
signal, is analytically estimated from the proportion of
false alarms and misses based on assumptions about
the nature of the decision variable distribution (Green
& Swets, 1966).

Now, consider the following scenario: An experi-
menter seeks to measure an observer’s perceptual
sensitivity for detecting a target stimulus at not one but
multiple (two or more) locations within a single
experimental session (Figure 1A). Such multialternative
tasks are widely used in studies investigating the neural
basis of perception, attention, or decision-making to
determine whether the observer’s sensitivity to detect a
stimulus differs between a cued (or microstimulated or
inactivated) location and other locations (Cavanaugh
& Wurtz, 2004; Cohen & Maunsell, 2009; Ray &
Maunsell, 2010; Sridharan, Ramamurthy, & Knudsen,
2013; Zenon & Krauzlis, 2012). The task design in such
studies extends the conventional binary choice Yes/No
detection task by presenting the target stimulus at
different locations (cued vs. uncued) across interleaved
trials, in addition to incorporating trials in which no
target stimulus is presented (‘‘catch’’ trials). The
observer reports the location at which she/he perceived
the stimulus, for instance, with a saccadic eye
movement to that location (Figure 1A, top sequence).
Such a response, termed a ‘‘Go’’ response, is analogous
to the ‘‘Yes’’ response in a binary choice detection task
except that in the multialternative task the observer is
rewarded for making a ‘‘Go’’ response to the specific
location at which the stimulus was presented. In case
no stimulus was presented (catch trials), the observer is
rewarded for not making a Go response to any location
(Figure 1A, bottom sequence). The latter response
alternative, termed a ‘‘NoGo’’ response, is analogous to
the ‘‘No’’ response in the binary choice detection task
(Figure 1A, lower).

We term such multialternative tasks that extend the
Yes/No detection task to measure detection perfor-
mance at multiple locations within a single experi-
mental session a ‘‘multialternative detection task’’
(Middleton & Meter, 1955). Despite the considerable
success of conventional binary choice signal detection
models in accounting for choice bias in simple detection
(Yes/No) tasks, they cannot be applied to multi-
alternative detection tasks without fundamental mod-
ifications (see next section; also DeCarlo, 2012;
Macmillan & Creelman, 2005, pp. 250–251).

Here, we propose the first analytical formulation for
accounting for bias in multialternative detection tasks.
We formulate the model in a multidimensional signal-
detection framework and present numerical approaches
for estimating perceptual sensitivity and choice bias
from measured response probabilities. We demonstrate
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analytically that the model is identifiable and that the
specification of the decision rule in the model is optimal
in terms of maximizing success in such detection tasks.
Finally, we validate the model empirically by success-
fully fitting previously published data from detection
and discrimination tasks (Garcı́a-Pérez & Alcalá-
Quintana, 2010, 2011a) and identify alternate, or
additional, sensory factors that could account for the
observers’ behavior in these tasks. Our model provides
a powerful tool for quantifying the relative contribu-
tions of bias and sensitivity for neuroscience studies of
attention and decision-making that employ multialter-
native tasks.

Results

The multialternative detection task: Motivation
for a multidimensional model

We present a multidimensional signal detection
model that decouples choice bias from perceptual
sensitivity in multialternative detection tasks (with
catch trials). To facilitate development of the model, we
choose a particular kind of simple detection task, a
multiple alternative spatial detection task (Figure 1A),
in which the observer must detect and report the
location of a briefly flashed target stimulus that can
occur at one (or none) of several potential spatial
locations. The theory is also applicable to at least two

other kinds of task designs: (a) spatial change detection
tasks that require the observer to detect and report the
location at which a change occurred in a stimulus
feature, such as a change in orientation from a standard
value (Figure 1B), and (b) feature-based detection tasks
that require the observer to detect and identify the
occurrence of stimuli with particular features (e.g.,
colors, directions of motion, tones of a particular
pitch). The former task has been commonly employed
in studies of visual attention (Cavanaugh & Wurtz,
2004; Cohen & Maunsell, 2009; Ray & Maunsell,
2010). For brevity, we will refer to such tasks as m-
ADC tasks (the acronym stands for multialternative
detection/change-detection tasks).

We motivate the development of the multidimen-
sional model for the two-alternative detection/change-
detection (2-ADC) task, by demonstrating why multi-
ple, independent, one-dimensional binary choice mod-
els incorrectly specify or fail to fully specify behavior in
this task. First, consider a binary choice (Yes/No)
spatial detection task (Figure 2A). In this task, the
stimulus is either presented at a location or not at all
(catch). Conventional SDT models the binary (Yes/No)
decision as a process of selecting one of two hypotheses
(N: No stimulus or S: Stimulus present) based on noisy
sensory evidence. The decision variable (W) that
encodes this sensory evidence is modeled as a Gaussian
random variable with unit variance. The mean of the
decision variable is specified as zero when no stimulus is
presented and takes on a nonzero value, d, when a non-
null stimulus is presented (Figure 2A). d, also termed

Figure 1. Multialternative detection task. (A) 2-ADC task. The observer initiates a trial by fixating on a zeroing dot. In some trials

(‘‘stimulus’’ trials, upper sequence), a target stimulus (here, a grating) is briefly presented at one of two potential locations (dashed

black circles) on the screen. The observer is rewarded for detecting and indicating the location of the target with a saccade (blue line,

‘‘Go’’ response) to the appropriate response box (dashed yellow circles). In other trials (‘‘catch’’ trials, lower sequence), no target is

presented for a prolonged period following fixation. In these trials, the observer is rewarded for maintaining fixation on the zeroing

dot (‘‘NoGo’’ response) following the appearance of the response boxes. (B) m-ADC task. Following fixation of a central dot, the

observer is presented with m (here, m ¼ 4) oriented gratings. At a random time following stimulus onset, the display goes blank

briefly (a few hundred milliseconds). Then, the four stimuli reappear. In some proportion of the trials, one of the four gratings has

changes in orientation (change trials), and in the remaining trials, none of the stimuli changes (catch trials). The observer is rewarded

for saccading to the location of the change (change trials) or for maintaining fixation in trials when no change occurred (catch trials).
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the ‘‘perceptual sensitivity,’’ is determined by, and
increases with the strength of the presented stimulus. In
a given trial, the observer chooses S if the decision
variable exceeds a particular cutoff value, the ‘‘criteri-
on’’ or c; such a specification permits optimizing a
variety of objective functions, including maximizing
success (proportion correct) in such tasks (for a
detailed discussion, see Green & Swets, 1966, section
1.7). The well-known 2 · 2 stimulus–response contin-
gency table for this type of task is shown in Table S1A
(Supplemental Data).

Based on the hit rate (HR)—the proportion of trials
in which the observer correctly reported a detection
when a stimulus was presented—and the false-alarm
rate (FA)—the proportion of trials in which the
observer incorrectly reported a detection when no

stimulus was presented—SDT provides a simple, one-
dimensional formalism for estimating d and c as,
respectively, d̂¼U�1(HR)� U�1(FA) and ĉ¼�U�1(FA)
(where U�1 represents the probit function, the inverse
cumulative distribution function associated with the
standard normal distribution). As mentioned in the
Introduction, c is a measure of the observer’s bias for
reporting a Yes versus a No response.

Consider next the 2-ADC task in which the stimulus
can be presented at one of two locations in addition to
not being presented at all (Figure 1A). The 3 · 3
contingency table for this task is shown in Table S1B
(Supplemental Data). For this task, the decision must
be made among three hypotheses: S1, stimulus at
location 1; S2, stimulus at location 2; or N, no stimulus
at either location.

Figure 2. Signal detection models for the multialternative detection task. (A) A simple detection (Yes/No) task modeled with a binary

choice (one-dimensional) signal detection model. Black Gaussian: decision variable distribution when no stimulus was presented,

p(WjN); red Gaussian: decision variable distribution when a stimulus was presented, p(WjS). Red shading: Hit rate; hatched region:

False-alarm rate; d: perceptual sensitivity for detection; c: choice criterion for a Yes response. (B) Performance in a 2-ADC task

modeled with two one-dimensional binary choice models. Top row: Behavior modeled as a two-stage decision with a binary one-

dimensional model for each stage. In the first stage, the observer decides if a stimulus was presented at all (N vs. S1 or S2), based on

the value of a decision variable (W) as in the conventional Yes/No task. In the next stage, the observer decides whether the stimulus

was presented at location 1 or location 2 based on the value of a different decision variable (W*) as in the conventional 2-AFC task

(see text for details). Bottom row: Behavior modeled with two binary choice (Yes/No) one-dimensional models, one at each potential

target location. Decisions are based on independent decision variables (W1, W2), sensitivities (d1, d2), and criteria (c1, c2) at each

location. This is a mis-specified model for the 2-ADC task (see text for details). Hatched region: False-alarm rate; gray shading: miss

rate. (C) Two-dimensional signal-detection model for the 2-ADC task. The decision is based on a bivariate decision variable W whose

components (W1 and W2) encode sensory evidence at each stimulus location and are represented along orthogonal axes in a two-

dimensional decision space. Decision variable components are independently distributed Gaussians. Black circle: contour of the joint

distribution of the decision variable components for no stimulus at either location (noise distribution). Red and blue circles: contour

of the joint distribution of the decision variable components for a stimulus at location 1 or location 2, respectively (signal

distributions). Linear decision boundaries (thick black lines) demarcate the domains of decision space for each potential response or

choice; these belong to the family of optimal decision surfaces for this model (see text for details). The integral of the decision

variable distribution within each region represents the probability of the corresponding response: NoGo (Y¼ 0, gray), Go response to

location 1 (Y¼ 1, red) or to location 2 (Y¼ 2, blue). Marginal distributions of each decision variable component are shown alongside

each axis.
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Let us propose that the observer adopts the following
two-stage strategy in performing this task. In the first
stage, the observer decides whether a stimulus is presented
at all (at either location) or not, i.e., the observer chooses
between giving a Go (Yes) or NoGo (No) response based
on the relative strengths of evidence for the hypotheses N
versus S1 or S2 (Figure 2B, top left) as in a conventional
Yes/No task. In the second stage, the observer decides
whether a stimulus was presented at location 1 or location
2, i.e., between giving a Go response to location 1 versus 2
based on the relative strengths of evidence for the
hypotheses S1 versus S2 (Figure 2B, top right) as in a
conventional 2-AFC task. The two binary-choice one-
dimensional models that capture this decision process are
shown in Figure 2B (top).

Does such a model fully specify all stimulus–
response contingencies for the 2-ADC task? During
catch (N) trials, the observer is free to give Go
responses (false alarms) to either location 1 or location
2 (Table S1B, last row). However, this model does not
specify these response contingencies individually; rath-
er, it only specifies the aggregate of the observer’s false
alarms (Go responses) to both locations during catch
trials (Figure 2B, top left, hatched). Conversely, the
observer may give different proportions of ‘‘miss’’
(NoGo) responses when stimuli are presented at
location 1 versus at location 2 (Table S1B, last column).
Again, this model does not specify responses to these
contingencies individually but only specifies the aggre-
gate of the observer’s miss rates to stimuli presented at
either location (Figure 2B, top left, gray shading).

It is tempting, then, to conceive of a model in which
the observer solves the task as independent Yes/No tasks
with an independent binary-choice model (independent
decision variable distributions and independent d and c)
at each location (Figure 2B, bottom row; Yeshurun,
Carrasco, & Maloney, 2008). This model does indeed
specify, separately, the FAs (during catch trials) for each
location (Figure 2B, bottom row, hatched) as well as
individual miss rates for each stimulus event (Figure 2B,
bottom row, gray shading). However, such a model is
not sufficient to model behavior in this task. For
example, the model specifies that, in each trial, the
observer gives a Go response to a location at which the
decision variable (W1 or W2) exceeds the criterion. But
what if the decision variables (W1 and W2) were to exceed
their respective criteria (c1 and c2) at both locations in a
particular trial? Go responses cannot be made to more
than one location in a given trial. It is possible that,
under these conditions, observers respond with a
random ‘‘guess’’ at one of the two locations. Whatever
the case, this model is insufficient, and a more elaborate
framework is required, for instance, to model the
observer’s guessing strategy.

These examples illustrate the reasons for why
independent, one dimensional binary choice signal

detection models are insufficient for modeling behavior
in m-ADC tasks.

A two-dimensional signal detection model for
the 2-ADC task

We develop a multidimensional model, first, for a
two-alternative (change) detection task (Figure 1)
and, in the next section, generalize the model to a task
with several alternatives (m . 2). We illustrate the
model with a stimulus-detection task, such as the one
shown in Figure 1A. However, the model is applica-
ble, with a simple translation of the origin of the
coordinate axes (see next), to change detection tasks,
such as the one shown in Figure 1B. We describe the
model verbally below and then provide an analytical
formulation.

Our two-dimensional signal detection model specifies
a bivariate decision variable W, whose components
encode sensory evidence at each location, k, along
orthogonal decision variable axes (also called ‘‘percep-
tual dimensions’’) in a two-dimensional decision space
(also called a ‘‘perceptual space’’; Figure 2C). When no
stimulus is presented (catch trials), the distribution of
W, given by the joint distribution of the two decision
variable components, is centered at the origin with
equal variance along each axis (Figure 2C, black; noise
distribution). A stimulus presented at a particular
location results in a ‘‘signal’’ distribution whose mean
lies along the decision axis for that location (Figure 2C,
red or blue). The value of this mean of the signal
distribution at each location, k, determined by the
strength of the stimulus at that location and measured
in units of noise standard deviation along the
corresponding dimension, is defined as the perceptual
sensitivity (dk).

The model posits that, while choosing a response, the
observer employs an independent choice criterion (ck)
for each location: In each trial, a response is made to
the location at which the decision variable component
exceeds the (respective) choice criterion. A difference in
criteria between the two locations gives rise to a choice
bias (relative preference) for one location over the
other. If decision variable components at both loca-
tions exceed their respective criteria, the response is
made to the location at which the difference between
the decision variable component and the corresponding
choice criterion was the greatest. If no decision variable
component exceeds its respective criterion, the observer
gives a NoGo response (Figure 2C, gray shaded
region). In this model, the response probability for each
stimulus event is the proportion (integral) of the
corresponding joint distribution within the respective
region. Thus, this two-dimensional 2-ADC model fully
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specifies each stimulus-response contingency for the 2-
ADC task (Table S1B, Supplemental Data).

2-ADC model formulation

We formulate a model for the 2-ADC task, first,
considering the case in which a stimulus of a single
strength is presented at each location. In the next
section, we extend this formulation to a multialterna-
tive task in which, additionally, the stimulus at each
location is free to vary in strength. We build upon a
recently developed latent variable formulation (De-
Carlo, 2012) that involves specifying a structural model
of the observer’s perceptual sensitivity for detecting the
presented stimulus and a decision rule that models the
effect of choice bias on the observer’s response. In the
Discussion, we analyze the assumptions inherent in this
formulation and discuss potential extensions.

We denote the observer’s response with the variable
Y: Y¼ i indicates that the observer chose to respond at
location i (Go response) whereas Y ¼ 0 indicates that
the observer gave a NoGo response. Similarly, we
denote the stimulus event with the variable X whose
components Xi denote where the event occurred: Xi¼ 1
indicates that a stimulus was presented at location i.
We further stipulate that no more than one stimulus be
presented in a given trial, a common practice in
psychophysics tasks of perception and attention (see

Discussion). Thus, jjXjj1¼
P2

k¼1 Xk ¼ 1 (stimulus trial)
or 0 (catch trial).

The structural model for the 2-ADC task posits
independently distributed decision variables Wi for each
of the two locations and specifies how these distribu-
tions change with each stimulus event:

W1 ¼ d1X1 þ e1 W2 ¼ d2X2 þ e2 ð1Þ
where Wi denotes the decision variable that encodes
sensory evidence at location i (i � {1, 2}), ei is a random
variable that represents the distribution of Wi when Xi¼
0, and di is the perceptual sensitivity, an indicator of the
strength of the perceived signal when a stimulus was
presented at location i (elaborated below).

The joint distribution of W1 and W2 when a stimulus
was presented (stimulus trials, jjXjj1 ¼ 1) is termed a
‘‘signal’’ distribution whereas the joint distribution of
the Wi when no stimulus was presented (catch trials,
jjXjj1¼ 0) is termed the ‘‘noise’’ distribution; the latter
distribution is identical with the joint distribution of the
ei. In line with conventional SDT for a binary choice
stimulus-detection task, we assume that the noise
distribution along each dimension is unit normal, i.e., ei
; N (0,1). We note that the assumption of Gaussian
distributions is not necessary for the model and the
results presented here (except for the demonstration of
model optimality).

di represents the change in the expected value of Wi

when a stimulus is presented at location i versus when
no stimulus is presented; in other words, di¼E(WijXi¼
1) – E(WijXi ¼ 0). di, measured in the units of noise
standard deviation (unity in conventional SDT),
determines the amount of the overlap (or lack thereof)
between the ‘‘signal’’ distribution when a stimulus was
present at location i (Xi¼ 1), and the noise distribution.
Hence, di is termed the perceptual sensitivity associated
with detecting a stimulus at location i and is determined
by the strength of the stimulus at that location.

In line with conventional SDT, the 2-ADC structural
model posits that a stimulus alters the mean of each Wi

(additively) without altering its variance or higher
moments. Thus, the distribution of each Wi is Gaussian
with unit variance. If the Wi distributions have unequal
variances across the different locations, the 2-ADC
structural model with unit normal distributions
(Equation 1) can be readily recovered by scaling each
Wi by its respective standard deviation.

In a more compact, but entirely equivalent, formu-
lation, each Wi can be considered a component of a
bivariate random variable (W) represented in a two-
dimensional, Cartesian decision space (such as that
shown in Figure 2C). Henceforth, in describing the
model we will interchangeably refer to the Wi as
‘‘decision variables’’ or ‘‘decision variable components’’
with the understanding that in either case these
represent the univariate (scalar) component variables
that constitute the bivariate (vector) decision variable
(W).

The 2-ADC decision rule extends the one-dimen-
sional SDT decision rule by specifying two choice
criteria, one for each location:

Y ¼ 1; if W1 . c1 ˙W1 � c1 . W2 � c2

Y ¼ 2; if W2 . c2 ˙W2 � c2 . W1 � c1

Y ¼ 0; if W1 � c1 ˙W2 � c2 ð2Þ
Thus, the observer makes a response at location i

when the value of the decision variable Wi exceeds
choice criterion ci. If the values of Wi exceed the
criterion at both locations, then the observer responds
to the location with the larger difference between the
decision variable and the (respective) criterion value
(larger Wi – ci). On the other hand, if Wi values fall
below the choice criterion at every location, then the
observer makes a NoGo response.

The decision rule is depicted in Figure 2C (thick
black lines). In a later section, we demonstrate how this
rule can be derived from optimal decision theory (for
the more general m-alternative case). These choice
criteria ci (Figure 2C) constitute an SDT measure of
bias. The relative value of the criteria between locations
indicates the magnitude of the bias: A lower choice
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criterion at a location corresponds to a greater choice
bias for that location. The analytical formulation of the
2-ADC decision rule is, arguably, more complex than
that of related models that incorporate NoGo re-
sponses (Ashby & Townsend, 1986; Garcı́a-Pérez &
Alcalá-Quintana, 2010). Consequently, the partitioning
of decision space and the analytical treatment of bias
represent fundamentally novel aspects of the 2-ADC
model.

In order to measure the contribution of bias to
behavioral responses, an analytical relationship must
be formulated between the criteria, sensitivities, and
response probabilities. The structural model and
decision rule permit establishing such a relationship.

Here, we summarize the dependence of response
probabilities on sensitivities and criteria; the detailed
derivation is provided in the Methods.

The following system of equations constitutes the 2-
ADC model:

pðY ¼ 1jXÞ

¼
Z ‘

c1�d1X1

Uðeþ d1X1 � d2X2 � c1 þ c2Þ/ðeÞ de

pðY ¼ 2jXÞ

¼
Z ‘

c2�d2X2

Uðeþ d2X2 � d1X1 � c2 þ c1Þ/ðeÞ de

pðY ¼ 0jXÞ ¼ Uðc1 � d1X1ÞUðc2 � d2X2Þ ð3Þ
where p(Y¼ ijX) represents the conditional probability
of a Go response to location i (i � {1, 2}) for each
stimulus event X; p(Y¼ 0jX) represents the conditional
probability of a NoGo response for each stimulus
event; and / and U represent, respectively, the
probability density and the cumulative distribution
functions of the unit normal distribution.

These equations represent the response probabili-
ties for the nine stimulus–response contingencies
shown in Table S1B (Supplemental Data). Only six
of these probabilities (two in each row of the table)
are independent. The three other response probabil-
ities (one in each row) are not free to vary as all
responses (Go and NoGo) are mutually exclusive and
exhaustive. Thus, in the 2-ADC model, there is an
excess of independent observations (six) relative to
the number of parameters (four: {d1, d2, c1, c2}) with
two degrees of freedom to test the goodness of fit of
the model.

Consider the effect of varying sensitivities and
criteria on response probabilities in the 2-ADC model.
Each of the nine response probabilities in the model
(Equation 3) is a function of the four parameters: the
criterion and sensitivity at each of the two locations.
Thus, each response probability constitutes a surface in
four-dimensional parameter space ({di, ci}, i � {1, 2}).

To facilitate representation, we examined a pair of two-
dimensional subspaces by varying the criteria holding
the sensitivities constant (parameter values in Table
S2A, Supplemental Data) and vice versa. In line with
conventional SDT, noise was assumed to be normally
distributed with zero-mean and unit variance. The task
specification requires that no more than one stimulus
be presented in a given trial. This permits us to employ
the following notational shorthand for the response
probabilities: p(Y¼ ijXj¼ 1)¼ pij, where the superscript
denotes the response location and the subscript denote
the stimulus location.

Figure S1A (Supplemental Data) illustrates the effect
of varying criterion ci at each location (i � {1, 2}) on the
response probabilities at a particular location, say,
location 1. The following general trends are apparent
from the figure: A higher choice criterion at a location i
(lower bias toward location i) reduces the probability of
response at that location (pik) and enhances the
probability of response at the opposite location (p j

k, j 6¼
i) regardless of where the stimulus was presented (i, j, k
� {1, 2}). Also apparent is the effect of sensitivity (di)
on response probabilities: Greater sensitivity to a
stimulus at a location enhances the HR at that location
(Figure S1B, red) and reduces the probability of a false
alarm (incorrect response) at the opposite location
(Figure S1B, blue).

A formulation identical to Equation 3 suffices to
model behavior in change-detection tasks, such as the
one shown in Figure 1B. Whereas in a stimulus-
detection task E(WijXi ¼ 0) ¼ 0 so that di is simply
equal to E(WijXi ¼ 1), in a change-detection task
E(WijXi ¼ 0) ¼ ds

i , where ds
i denotes the mean of the

decision variable distribution for the standard stim-
ulus at location i so that di ¼ E(WijXi ¼ 1) – ds

i : In
other words, for the change-detection task, the di and
ci must be measured with the origin of the
coordinates at the center of the decision variable
distribution for the standard stimulus (Figure 2C,
black distribution). For simplicity of illustration, the
formulation henceforth will be based solely on the
stimulus-detection task (e.g., Figure 1A) with the
understanding that the same logic and analogous
equations are readily applied to change-detection
tasks with an appropriate translation of the origin of
the coordinate axes.

Generalization to the m-ADC task

The m-ADC task permits more than two Go
response alternatives along with the NoGo response
alternative. We formulate the model for this task
incorporating, in addition, the potential for stimuli of
various strengths to be presented at each location.
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m-ADC model formulation

The formulation of the m-ADC model is conceptually
similar to that of the 2-ADCmodel. The key difference is
that perceptual sensitivity d is nowdefined as a functionof
stimulus strength: Stronger, more salient stimuli are more
reliably detected because the respective signal distribution
is further removed from the noise distribution (higher d),
resulting in less overlap between the signal and noise
distributions. The psychophysical function describes the
variation of perceptual sensitivity, d, with stimulus
strength. Here, we relate the psychophysical function to
the psychometric function, which describes the variation in
the observer’s response proportions p with stimulus
strength in the m-ADC model.

In order to account for the variation of perceptual
sensitivity (d) with stimulus strength, we specify the m-
ADC structural model as follows:

Wi ¼ diðniÞ þ ei ð4Þ
where ni (i � {1, 2, . . . m}) represents the stimulus
strength at location i (e.g., contrast in Figure 1A or
orientation change magnitude in Figure 1B), the
psychophysical function di(ni) describes variation of
sensitivity at location i with the stimulus strength at
that location, and ei ; N (0,1). For ease of illustration,
we choose ni to represent the contrast of the stimulus.
In this exemplar case, our theory relates response
probabilities to the well-known psychophysical func-
tion of stimulus contrast.

As with the 2-ADC model, each Wi in the m-ADC
model can be considered an independent component of
a multivariate (random) decision variable (W) repre-
sented in a multidimensional decision space. In
addition, the assumption of orthogonality (indepen-
dence) among the Wi implies that the covariance matrix
of this decision variable is a diagonal matrix.

The m-ADC decision rule is defined as follows:

Y ¼ i if Wi . ci ˙
ðWi � ciÞ ¼ maxðW1 � c1;W2 � c2; . . . ;Wm � cmÞ

¼ 0 if ˙k Wk � ck ð5Þ
Thus, the observer gives a Go response to the

location at which the value of the decision variable
exceeds the choice criterion, and at which the difference
between the decision variable value and the corre-
sponding choice criterion is maximal. If the value of the
decision variable does not exceed the choice criterion at
any location, the observer gives a NoGo response.

We posit that the observer employs a fixed criterion,
ci, at each location i that is independent of (does not
vary with) stimulus strength. Such an assumption is
plausible for task designs in which stimulus strength is
varied pseudorandomly across trials so that the
observer cannot adjust her/his criterion systematically
based on foreknowledge of stimulus strength.

As before, the structural model and decision rule
permit establishing the relationship between sensitivity,
criteria, and m-ADC response probabilities (derived in
the Methods).

pðY ¼ ij nÞ

¼
Z ‘

ci�diðniÞ

Y
k;k6¼i

Uðeþ diðniÞ � dkðnkÞ

� ci þ ckÞ/ðeÞ de

pðY ¼ 0j nÞ ¼
Y
k

Uðck � dkðnkÞÞ ð6Þ

where n¼ (n1, n2, . . . nm) denotes a stimulus event with
its ith component representing the contrast of the
stimulus presented at location i, p(Y ¼ ijn) represents
the psychometric function, the conditional probability
of Go responses to location i for each stimulus event
(n), and p(Y¼0jn) represents the psychometric function
of a NoGo response for each stimulus event. For the m-
ADC task, as for the 2-ADC task, we specify that the
stimulus is presented at no more than one location in a
given trial so that, at most, one ni is nonzero.

The m-ADC model contains nS m2þm independent
observations (assuming nS stimulus levels at each
location) from which the m þ nS m parameters,
corresponding to the m criteria, and m sensitivities for
each of the nS stimulus strengths must be estimated.
Even in the case of only a single stimulus level at each
location (nS¼ 1), there are at least m2 – m degrees of
freedom to evaluate goodness of fit for all m � 2.

It is often of interest to understand how an
experimental manipulation, such as cueing a particular
location for attention, affects the underlying psycho-
physical function (d(n)): Does the manipulation scale,
shift, or change the slope of the psychophysical
function (Herrmann, Montaser-Kouhsari, Carrasco, &
Heeger, 2010; Lee & Maunsell, 2009; Reynolds &
Heeger, 2009)? A parametric form of the psychophys-
ical function, which provides an analytical relationship
between sensitivity d, and stimulus contrast, n, facili-
tates such an analysis. Sigmoidal functions, such as the
hyperbolic ratio function, as well as linear or power
functions are all candidate psychophysical functions.

For illustration, we choose the three-parameter
hyperbolic ratio (or Naka-Rushton) function: d(n)¼
dmax (n

n) / (nnþ (n50)
n). The parameters of this function,

dmax, n50, and n (which we call psychophysical
parameters) correspond to the asymptotic value,
contrast at 50% of asymptotic value, and slope of the
psychophysical function, respectively. Altering each
parameter in turn scales (dmax), shifts (n50), or changes
the slope (n) of the psychophysical function.

With the psychophysical function thus parameterized,
the number of parameters reduces to 4m corresponding
to the three psychophysical parameters and one criterion
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at each of the m locations. Thus, the number of degrees
of freedom are nSm

2 – npm where np is the number of
parameters characterizing the psychophysical function
(np¼ 3 for the hyperbolic ratio function).

Figure S2 (Supplemental Data) depicts the effect of
varying each psychophysical parameter and choice
criterion on the psychometric functions at location 1,
p(Y ¼ ijn1) (parameter values in Table S3A,
Supplemental Data). For values of the parameters that
do not saturate the response probabilities, the effect of
varying the psychophysical parameters dmax, n50, and n
on the psychometric functions (Figure S2A through C)
is similar to the effect of the respective parameter on
the psychophysical function, d(n), viz. scaling, shift,
and slope change (Figure S2A through C, insets). On
the other hand, altering each response criterion (ci),
which, by definition, has no impact on the psycho-
physical function, alters the psychometric function in
complex ways: The effects include apparent scaling,
shifting, and/or slope changes (Figure S2D through E).
However, the proportion of responses increases (across
all n) with decreasing criterion at that location and with
increasing criterion at the opposite location, consistent
with the monotonic trends noted before (Figure S1A,
Supplemental Data).

Parameter estimation, identifiability, and
optimality

In the 2-AFC task, perceptual sensitivity and choice
criteria are readily estimated analytically as these
quantities occur as linear terms of the argument of an
invertible probit function (Green & Swets, 1966).
Moreover, the specification of a criterion (or cutoff
value) in the 2-AFC model is Bayes optimal in terms of
maximizing reward or the proportion of correct
responses (Luce, 1963).

On the other hand, the potential for a stimulus event
at one of multiple locations (m . 2) and catch trials
renders the m-ADC model multidimensional and raises
several challenges. First, in this multidimensional SDT
model, the system of Equation 6 is not readily inverted
(analytically) to yield model parameters. Thus, given a
set of experimentally observed m-ADC response
probabilities (e.g., contingency table, Table S1B), is it
possible to obtain estimates of the underlying percep-
tual sensitivities and choice criteria that generate these
response probabilities? Second, can one guarantee
model identifiability so that a given set of response
probabilities can be produced by only one set of
parameters in the model? Finally, can one show that
the specification of independent criteria at each
location (linear, intersecting decision surfaces; Figure
2C) constitutes an optimal decision rule? We addressed
the first of these challenges (parameter estimation) by

developing and extending numerical approaches noted
in a recent study (DeCarlo, 2012), described next. We
addressed the remaining two challenges (demonstrating
model identifiability and optimality) with analytical
approaches, described subsequently.

Parameter estimation

We employed numerical (maximum likelihood and
Bayesian) methods to estimate model parameters
(sensitivities and criteria) from the response probabil-
ities. The additional degrees of freedom in the m-ADC
model permit the possibility that no single set of
parameters satisfies all of the equations, rendering it
necessary to employ optimization approaches.

We demonstrate parameter recovery with the 2-ADC
model by providing simulated data as input to the
numerical algorithms in lieu of experimental data; the
procedure can be readily extended to the m-ADC case.

First, we verified that parameters could be estimated
in a simulated task with a single stimulus level at each
location. Simulated response counts (N ¼ 4,000 trials
from 20 experimental blocks) were generated, based on
probabilities computed from Equation 3 with a
prespecified set of criteria and sensitivities (Table S2A,
Supplemental Data). The stimulus–response contin-
gency table for these response counts is shown in Table
S2B (details provided in the Methods).

With these simulated data, we attempted to recover
the underlying sensitivities and criteria based on a
maximum likelihood estimation (MLE) approach. For
various initial guesses (Figure 3 through B, colored
diamonds), the MLE algorithm recovered identical
estimates of the four parameters (Figure 3A through B,
black circle) that closely matched the original param-
eters used in the simulation (Table S2C, Supplemental
Data). Similar results were obtained with a Bayesian
estimation (Markov-Chain Monte Carlo, MCMC)
approach (Figure S3, Supplemental Data; details in
Methods). Thus, the sensitivities and criteria could be
readily estimated from simulated responses in the 2-
ADC model based on numerical approaches. In
addition, the algorithms reliably converged onto an
identical set of sensitivities and criteria in parameter
space (Figures 3A through B and S3), suggesting that
the model is identifiable.

Next, we verified that these parameters could be
recovered for a simulated task with many stimulus
levels at each location. Specifically, we sought to test if
the parameters of the psychophysical function could be
reliably recovered from the psychometric function in a
one-shot estimation procedure. Details on generating
the simulated psychometric functions are provided in
the Methods, and the parameters used in these
simulations are presented in Table S3A (Supplemental
Data). Psychophysical functions at the two locations
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were assumed to be identical whereas a greater choice
bias was assigned to location 1 (c1 , c2).

Psychophysical parameters and criteria were reliably
recovered with the MLE procedure (Table S3B,
Supplemental Data). Psychometric functions computed
from the recovered parameters fit the data with
virtually no error (Figure 3C and D, solid curves).

Fitting the data with a model that excluded bias
revealed important insights. Following MLE with such
a model (Figure S4A, Supplemental Data; similar to
the model described in Macmillan & Creelman, 2005, p.
258), which enforces a symmetric decision boundary
(uniform ci ¼ c), we plotted the reconstructed psycho-
metric functions both separately for each location as
well as with the responses pooled (as ‘‘correct’’ vs.
‘‘incorrect’’) across locations. When data were plotted
separately for each location, the reconstructed psy-
chometric functions (Figure 3C and D, dashed curves)
deviated systematically from the original data (Figure
3C and D, circles). In addition, the model systemati-
cally overestimated the psychophysical function at
location 1, the location of greater bias (Figure S4B,
dashed red curve), and systematically underestimated it

at the other location (Figure S4B, dashed blue curve).
On the other hand, when data were pooled across
locations as the proportion of correct (hit) and
incorrect (misidentification) responses, the recon-
structed psychometric functions closely fit the data
(Figure 3E). The significance of these observations is
discussed later (see Discussion).

Identifiability of the m-ADC model

Is the m-ADC model identifiable so that for a given a
set of parameters h (sensitivities and criteria) that
produce a set of response probabilities pij there is no
other parameter set h* that also produces the same
probabilities? In the previous section, we demonstrated
that, for various initial values of parameter guesses,
numerical approaches reliably recover an identical set
of 2-ADC model parameters, suggesting that the 2-
ADC model is identifiable. However, the model
contains nonlinear integral equations, and we must
entertain the possibility that multiple parameter con-
figurations may be consistent with a given set of

Figure 3. Estimating sensitivities and criteria from simulated responses. (A–B) maximum likelihood estimation (MLE) of the perceptual

sensitivity (A) and choice criterion (B) at each location from simulated response counts for a two-alternative detection task (Table

S2B, Supplemental Data). Beginning with an initial guess for each parameter, the algorithm uses a line-search method to identify the

sensitivities and criteria that maximize the likelihood of the simulated response counts. For various initial guesses (colored diamonds-

s), the MLE algorithm converged reliably onto identical sensitivity and criterion values at each location (black circles/dashed gray

lines). (C) Psychometric functions of the probability of response at location 1 as a function of the contrast of a stimulus presented at

location 1 (red circles) or at location 2 (blue circles). Error bars: Standard deviation across simulated runs (N ¼ 100). Solid curves:

Psychometric functions based on fitting a model that incorporated bias. Dashed curves: Fits with a model that did not incorporate

bias. (D) Same as in (C) but for the response probability at location 2. (E) Same as in (C) but with data and fits pooled across locations

as ‘‘correct’’ (hit, black) and ‘‘incorrect’’ (misidentification, green) responses.
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response probabilities, especially in the m-alternative
case (m . 2).

Establishing the concavity of the likelihood function
is a powerful approach for demonstrating model
identifiability. Figure 4A through D shows the likeli-
hood function of the 2-ADC model, a function of four
parameters (2 di and 2 ci). We depict this four-
dimensional likelihood function in a pair of two-
dimensional subspaces by holding ci constant and
varying di or vice versa (Figure 4A and B, parameter
values in Table S2A, Supplemental Data). In the
domain of parameter values shown in the figure, the
likelihood function appears to be concave (Figure 4A
through D) indicating a single, global minimum
corresponding to a unique set of underlying parame-
ters. However, demonstrating, analytically, the con-
cavity of the likelihood function appears to be
intractable even for the 2-ADC model (see Appendix C,
Supplemental Data).

Here we demonstrate model identifiability with
logical reasoning (for the two-alternative case) and with
mathematical induction (for the m-alternative case). A
sketch of the proof is provided below, and the detailed

formulation is provided in Appendices A and B
(Supplemental Data). We illustrate the identifiability of
the 2-ADC model by reasoning in two steps. First, we
demonstrate that a given set of response probabilities
during catch trials pi0, i � {0, 1, 2} are produced by
exactly one pair of criterion values (c1, c2). Next, we
demonstrate that a given set of response probabilities
during stimulus trials pij, i, j � {1, 2} are produced by no
more than one set of sensitivity values (d1, d2). We
develop a geometric intuition by varying the criterion
and sensitivity parameters and examining the effects on
the probabilities of each response (Figure 5A through
C).

First, consider a set of 2-ADC response probabilities
to each location produced by a set of criteria (c1, c2)
(Figure 5A, solid lines) during catch trials (note that in
catch trials, d1 ¼ d2 ¼ 0, by definition). These response
probabilities correspond to the area under the joint
distribution of W1 and W2 in each of the three (shaded)
regions (Figure 5A). Let us assume that another set of
(distinct) criteria (c01,c

0
2) (Figure 5B, solid lines) also

produces the same set of response probabilities. We

Figure 4. 2-ADC model identifiability. (A) Contour plot of the 2-ADC multinomial log-likelihood as a function of the sensitivities (d1, d2)

at the two locations. (B) Contour plot of the 2-ADC multinomial log-likelihood as a function of the criteria (c1, c2). The concavity of the

function is apparent throughout the domain of parameters shown. (C) The variation of log-likelihood with sensitivity at each location

for fixed values of the other parameters (sensitivity at the other location and the two criteria, cross section through the dashed white

lines of panels A–B). Dashed gray lines: values of the parameters that maximize the log-likelihood function; red data: location 1; blue

data: location 2. (D) Same as (C) but variation with the criterion at each location for fixed values of the other parameters (criterion at

the other location and the two sensitivities). (E) Probability of response during catch trials to location 1 (left), location 2 (middle), or

NoGo (right) as a function of the choice criterion at each location. Colored lines: The contour traversing all possible pairs of criteria

consistent with a specific value of each response probability; red: probability of a Go response to location 1; blue: probability of a Go

response to location 2; green: probability of a NoGo response. (F) The three contours (red, blue, green) intersect at a single point

indicating that exactly one set of criteria is consistent with a given set of response probabilities. Arrows: Specific values of NoGo and

Go response probabilities at each location and the unique pair of criteria that is consistent with this specific set of response

probabilities.
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need to show that such an alternate set of criteria does
not exist; in other words c01 ¼ c1 and c02 ¼ c2.

Without loss of generality, let c01 be less than c1. As is
apparent from Figure 5A and B, the smaller criterion at
location 1 would result in a smaller NoGo response
probability (p0

0, Figure 5B, gray region) unless the
criterion at location 2, c02 were greater than c2.
However, a smaller criterion at location 1 and a larger
criterion at location 2 would result in an increase in the
response probability to location 1 (p1

0, expansion of the
red region, Figure 5A vs. 5B) and a decrease in the
response probability to location 2 (p2

0, shrinking of the
blue region, Figure 5A vs. 5B). The alternate possibil-
ity, when c01 . c1, would result in the opposite scenario:
to maintain the probability of a NoGo response, c02 ,

c2, resulting in a decrease in the response probability to
location 1 and an increase to location 2. Thus, the only
way the alternate set of criteria could produce the same
response probabilities is if the two sets of criteria were
identical, i.e., c01 ¼ c1 and c02 ¼ c2.

To further illustrate this graphically, consider the
response probabilities in the 2-ADC parameter space of
criteria during catch trials (d1¼ d2¼ 0). The sets of all
possible pairs of choice criteria that could determine
the probability of each type of response during catch
trials (locus of variation of c1 and c2 for specific values
of pi0) are shown in Figures 4E and F (colored contours:
i¼ 1, red; i¼ 2, blue; i¼ 0, green). Note that the three
contours intersect at exactly one point in the c1 – c2
plane (Figure 4F), indicating that exactly one pair of
criteria is consistent with these response probabilities.

Next, once the criteria are identified, we examine the
effect of varying the sensitivity to a stimulus at each
location (say, location 1, Figure 5C) on the set of
response probabilities. It is clear that this relationship is
monotonic for each response probability. For example,
gradually increasing the sensitivity to detect a stimulus
at location 1 (Figure 5C; dashed circles) increases the
response probability to that location (p1

1) and decreases
the probabilities of the other two responses p2

1, p
0
1

(Figure S1B, Supplemental Data). The monotonicity of

Figure 5. Model identifiability and optimality. (A–C): Identifiability of the 2-ADC model. (A) Two-dimensional decision space for the 2-

ADC model during catch trials, partitioned into three decision regions—NoGo response (gray) or Go response to location 1 (red) or

location 2 (blue)—by one set of criteria (c1, c2). Dashed circle: Contour of the noise distribution. Thick solid lines: Decision boundaries.

Other conventions are as in Figure 2C. (B) 2-ADC decision space during catch trials partitioned with an alternate set of criteria (c
0

1, c
0

2).

These criterion values were chosen to keep the NoGo response probability the same as in (A). Thick, dashed lines: The decision

boundaries associated with criteria (c1, c2) in (A). Other conventions are as in (A). (C) 2-ADC decision space with increasing perceptual

sensitivity to a stimulus at location 1 (increasing d1). Red circles: Contours of the signal distribution. Gray circle: Contour of the noise

distribution. Response probabilities in each decision region vary monotonically with increasing perceptual sensitivity along either

dimension. Other conventions are as in (A). (D) Optimal decision surfaces in the 2-ADC decision space. Dashed circles: Contours of the

decision variable distributions. Thick dashed lines: Optimal decision boundaries when prior probabilities of all stimulus events are

equal. Solid circles: Contours of the posterior; Thick solid lines: Optimal decision boundaries when the prior probability of a stimulus

presentation at location 1 is higher than the probability of a catch trial. The marginal distributions of the signal and noise distributions

along dimension 1 are shown below (same conventions); horizontal green line: the value for the contours shown in the top panel (see

text for details on the various probability notations).
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this relationship implies that a given set of response
probabilities can be produced by exactly one set of
sensitivity values (d1, d2).

The analytical proof, presented in Appendix A.1
(Supplemental Data), formally demonstrates identifi-
ability of the 2-ADC model. Demonstrating identifi-
ability for the m-ADC model, for any general m, is more
involved; the proof, based on mathematical induction, is
presented in Appendix A.2 (Supplemental Data).

Optimality of m-ADC decision boundaries

We have demonstrated that the m-ADC model is
identifiable and that its parameters can be reliably
estimated. We have, however, specified the model and
the decision rule, ad hoc, without any justification for
why an observer in the real world would adopt such a
decision rule. In this section, we show that the m-ADC
decision boundaries (Equation 5) belong to a family of
optimal decision surfaces for maximizing success rates
in multialternative detection tasks. As before, we
provide a geometric intuition for the result with the 2-
ADC model and derive the result formally for the m-
ADC model in the methods and Appendix D
(Supplemental Data).

Consider, the 2-ADC model in Figure 5D with three
possible events: two stimulus events, one at each
location, and a no-stimulus (or catch) event. We first
discuss the case in which each of these events is equally
likely to occur. First, consider one stimulus event
(stimulus at location 1) and the no-stimulus (catch)
event. In order to maximize success with distinguishing
between these two events, what would an ideal observer
do? Figure 5D shows the decision variable distributions
for each of these events (dashed circles) in two-
dimensional decision space, and the corresponding
marginal distributions (dashed Gaussians) are shown
along dimension 1 (the W1-axis). Note that the two
distributions cross over at the point W1¼ c1 (dashed
vertical line). In a given trial, let the decision variable
take some value Wt. In order to maximize success, it is
intuitively clear that the optimal (Bayesian) strategy
would be to report the event corresponding to the
distribution that is most likely (greatest likelihood) to
have produced this value Wt. The ideal observer would
choose to report a stimulus at location 1 (Go response)
if the component of Wt, Wt

1 exceeds the criterion c1
because the marginal probability for the stimulus event
at location 1 (p(W1 j Stim 1)) exceeds that for the catch
event (p(W1 j Catch)) for all W1 . c1. Similarly, the
observer would choose to report a catch event (NoGo
response) if Wt

1 , c1. Thus, the linear decision
boundary W1¼ c1 (dashed, thick vertical line) forms an
optimal decision surface for distinguishing between
these two events.

A parallel argument can be made for optimal
boundaries for deciding between the other two pairs of
events: a stimulus at location 2 versus no stimulus
(dashed, thick horizontal line, W2 ¼ c2) and a stimulus
at location 1 versus at location 2 (dashed, thick oblique
line, W1 – W2¼C), where C is a constant. The value of
C can be determined by noting that the three decision
boundaries intersect at a point (see Appendix D.2 for
proof). Thus, C¼ c1 – c2, and the decision boundary is
given by W1 – W2¼ c1 – c2 or (with a slight
rearrangement) W1 – c1 ¼W2 – c2.

In summary, the ideal observer decides to report one
of the three events by comparing the value of W1 to c1
(dashed, thick vertical line), W2 to c2 (dashed, thick
horizontal line), and W1 – c1 to W2 – c2 (dashed, thick
oblique line). These are identical with the decision
boundaries specified in the 2-ADC model.

Next, we consider the case in which the three events
are not equally likely to occur. In this case, it is
intuitively clear that the ideal observer must take into
account not only the different decision variable
distributions for each event, but also how likely it is for
each event to occur during the experiment. For
example, if it is known that one event (e.g., stimulus at
location 2) never occurs, it must be discounted when
making a response.

In our model, for ease of illustration, let the prior
probability of a stimulus event at location 1 (p(Stim 1))
be greater than the prior probability of a catch trial
(p(Catch)), with the prior probability of a stimulus
event at location 2 unaltered. In this case, the ideal
observer decides between the two events after weighting
(multiplying) each decision variable distribution by its
respective prior probability, i.e., based on the posterior
(solid circles and Gaussians). As is apparent from the
figure, the optimal decision boundary after incorpo-
rating priors (W1¼ c*

1) is shifted toward the origin,
indicating a greater bias toward reporting a stimulus
event at location 1 and a lower bias for reporting a
catch event. Thus, in order to maximize success, the
ideal observer compares the relative values of the
posterior (posterior odds ratio) for each event based on
linear decision boundaries as specified in the 2-ADC
model. These arguments may be extended for a m-
ADC model (with more than two alternatives) to show
that, in general, hyperplanes in m-dimensions consti-
tute optimal decision boundaries for maximizing
success (Methods).

Finally, it is possible that the benefits of a successful
report are not the same for each stimulus event. Thus,
an ideal observer must also take into account the
relative benefits when making her/his final decision.
The m-ADC decision rule models optimal decision-
making in this more general scenario as well. Specif-
ically, the rule maximizes average benefit (or utility)
and minimizes average cost (or risk) when the cost of
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an erroneous response is identical across all stimulus
events (Methods). The formal proofs are provided in
the Methods and Appendix D (Supplemental Data).

Empirical validation

Can the m-ADC model explain data from human
multialternative behavioral tasks that include NoGo
responses? And if so, how does its performance
compare with that of existing models that incorporate
such responses? The indecisionmodel is a ternary choice
model that has been widely applied to explain
behaviors in two-alternative nonforced choice (2-

ANFC) tasks that incorporate NoGo (or ‘‘undecided’’)
responses and, optionally, catch trials (Garcı́a-Pérez &
Alcalá-Quintana, 2010, 2013).

A schematic of the indecision model is shown in
Figure 6A. The indecision model and the 2-ADC model
(Figure 2C) differ in how each partitions decision
space. The partitioning scheme reveals a key distinction
between the decision strategies that an observer would
adopt in each model: With the indecision model, the
observer would be expected to give a NoGo response
when unsure about which location or interval con-
tained the target stimulus (to report ‘‘uncertainty’’)
whereas with the 2-ADC model, the observer would be
expected to give a NoGo response when neither
location or interval appeared to contain the target

Figure 6. Empirical validation and model comparison: Target detection task. (A) Schematic of the ‘‘indecision model’’ for a two-

interval (or two-alternative) nonforced choice task. The indecision model partitions decision space differently from the 2-ADC model

and specifies that the observer provides a NoGo response when ‘‘uncertain,’’ i.e., when sensory evidence is equivocal for a target

stimulus in either interval (gray diagonal band). l and d are sensitivity and criterion parameters in this model; d defines the extent of

the NoGo response region. Other conventions are as in Figure 2C. (B) Estimates of sensitivity for the target-detection task from the

indecision model (x-axis) and the 2-ADC model (y-axis). Error bars: parameter standard errors based on MLE. Dashed oblique line: Line

of identical sensitivities. Data points represent individual observers (N¼ 17). (C) Schematic of the indecision model with bias, with

different criteria (d1 6¼ d2) for a Go response to each interval. (D) Estimates of bias (difference between the values of the criterion for

interval 1 and the criterion for interval 2) from the indecision model (x-axis) and the 2-ADC model (y-axis). Dashed lines: Lines of zero

bias. Other conventions are as in panel B. (E) Estimates of sensitivity from the 2-ADC (white circles) and indecision (gray circles)

models that include (x-axis) or exclude (y-axis) a finger-error term. Other conventions are as in panel B. (F) Estimates of bias from the

2-ADC (white squares) and indecision (gray squares) models that include (x-axis) or exclude (y-axis) a finger-error term. Other

conventions are as in panel D. (Inset) Distribution of differences in BIC values between the two models (indecision� 2-ADC); values to

the left of the dashed vertical line indicate a lower BIC value for the indecision model and values to the right a lower BIC value for the

2-ADC model.
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stimulus (to report ‘‘absence’’). In addition, the
partitioning scheme renders the indecision model one-
dimensional, following a linear transformation of
decision variables (Figure 8C) whereas the 2-ADC
model is necessarily two-dimensional (Figure 8A).
Other key distinctions are highlighted in the Discussion
section.

In order to test the empirical validity of the 2-ADC
model, we fit the model to data from two published
experiments: a detection task and a discrimination task.
The data from each task were previously shown to be
well fit by the indecision model (Garcı́a-Pérez & Alcalá-
Quintana, 2010, 2011a, 2013). In each case, results from
fitting the 2-ADC model produced alternative inter-
pretations of the data, offering insights to alternate

mechanisms of perceptual decision-making that might
underlie each task.

Experiment 1. Target detection: Sensory versus
nonsensory origins of misidentified responses

We first fit the 2-ADC model to data from a target-
detection task that was based on a temporal, two-
interval nonforced choice paradigm. In this experiment,
a target stimulus (Gabor patch) was presented in one of
two approximately half second temporal intervals, and
in a fraction of trials, no target was presented in either
interval (catch trials). Observers indicated the interval
in which they detected the target by pressing one of two
keys. In addition, they could give a NoGo response (or

Figure 7. Empirical validation and model comparison: Length discrimination task. (A) Schematic of a 2-ADC model for a discrimination

task (in this case, a length-discrimination task). Two criteria, cA and cB, partition the decision space into three response regions:

stimulus above longer (Above . Below, red), stimulus above shorter (Above , Below, blue), and equal perceived length (NoGo or

unsure, gray). The key difference with the standard 2-ADC model is that the NoGo decision region is bounded from all sides. X-axis:

increasing lengths of the stimulus above. Y-axis: increasing lengths of stimulus below. Origin: point of subjective equality (PSE) of the

test and standard stimuli. Other conventions are as in Figure 2C. (B) Fit of the 2-ADC model (solid lines) for each of the two observers

in the length-discrimination task. Closed circles and thick lines: proportion of vertical (test) . horizontal (standard) responses and

model fits. Open circles and thin lines: proportion of NoGo (unsure) responses and model fits. Dashed lines: Fits of the indecision

model. X-axis: length of the vertical stimulus. Arrow: Point of objective equality (104 pixels). Dashed vertical line: PSE. (C) Same as in

(A) but schematic of the 2-ADC model that incorporates an interaction term (a) among the decision variables (2-ADCX model, see text

for details). Dot-dashed lines: Trajectories of the mean of the decision variable distributions with mutual (competitive) interactions.

(D) Same as in (B) but fit of the 2-ADCX model.
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a ‘‘guess’’ response, according to the authors’ termi-
nology) by pressing a third key if they could not tell in
which interval the target had occurred. Thus, each
observer’s NoGo response could indicate ‘‘absence’’
(not able to detect the target, as in a 2-ADC model),
‘‘uncertainty’’ (not sure in which interval the target had

occurred, as in an indecision model), or both. Eighteen
observers each performed 600 trials of this task: 200
trials with a target in each of the two intervals and 200
catch trials. Other details regarding the stimuli and
acquisition protocols can be found in Garcı́a-Pérez and
Alcalá-Quintana (2010).

Figure 8. Relationship to previous models. (A) Schematic of a 2-ADC model. There are three potential stimulus events—stimulus at

location 1, at location 2, or no stimulus (catch)—with their associated decision variable distributions (red, blue, and black contours,

respectively). The decision rule partitions decision space into three response regions, including a NoGo response. Thick lines: decision

boundaries. Left and right panels: Decision variable distributions and optimal decision surfaces for equal (left) or unequal (right)

sensitivities for the different stimulus events. (B) Schematic of a 2-AFC model. The decision rule partitions decision space into two

response regions. Lower inset: The model is readily reducible to an equivalent, one-dimensional formulation by a linear

transformation of decision variables (difference, Ws¼W1 – W2). Other conventions are as in (A). (C) Schematic of an indecision model.

The decision rule partitions decision space into three response regions, including a NoGo response. Lower inset: This model is also

readily reducible to an equivalent, one-dimensional formulation by a linear transformation of decision variables (difference, Ws¼W1

– W2). Other conventions are as in (A). (D) Schematic of a GRT model. In addition to the three stimulus events (as with the other

models), a fourth compound stimulus event (purple circle) occurs in trials in which target stimuli (or changes) occur at both locations

in a given trial. The decision rule partitions decision space into four response regions, including NoGo (or neither) and ‘‘Both’’
responses (2 · 2, complete identification design). For the configuration shown, the GRT model is reducible to two independent one-

dimensional models (shown alongside each axis).
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Comparing the 2-ADC and indecision models

We fit the data from the original study (Garcı́a-Pérez
& Alcalá-Quintana, 2010; their table 1) with a three-
parameter 2-ADC model with two criteria (c1, c2), one
for detection in each temporal interval, and one
sensitivity parameter (d). We assumed that detection
sensitivities for the two intervals were identical. We also
fit the data with the indecision model (which also
assumes equal detection sensitivities, as in the original
study) with the following three parameters (Figure 6A):
the sensitivity (l) of detection during either target
interval, a criterion (d) that delineates an indifference
zone such that the observer indicates a guess response if
– d � W2 – W1 � d, and a finger error term (k). The
finger-error term models unintentional response (mo-
tor) errors (‘‘hitting an unintended response key by
mistake,’’ Garcı́a-Pérez & Alcalá-Quintana, 2010, p.
880). The indecision model in the original study
assumed a noise standard deviation of

ffiffiffi
2
p

for the
decision variable (difference of sensory effects) distri-
bution (Garcı́a-Pérez & Alcalá-Quintana, 2010, pp.
878–879). As sensitivity and criteria in the 2-ADC
model are measured in units of noise standard
deviation, all parameter estimates of the 2-ADC model
were scaled by

ffiffiffi
2
p

to permit comparison with
indecision model parameter estimates. Model fitting
and parameter estimation were performed with the
MLE approach (Methods).

The 2-ADC model generally outperformed the
indecision model in fitting the data. The 2-ADC model
successfully fit performance for 16 of the 18 observers
at the 0.05 level (median p value¼ 0.60, randomization
test; the model failed for observers #4 and #15). On the
other hand, the three-parameter indecision model fit
performance for 14 of the 18 observers (the model
failed for observers #4, #6, #11, and #13), replicating
the findings of the original study. The goodness-of-fit
G-statistic distribution across observers was not

significantly different between the two models (median
6 std: 1.67 6 1.58 for the 2-ADC model and 1.54 6
1.53 for the indecision model; p ¼ 0.31, Wilcoxon
signed rank test, n¼ 17, excluding observer #4’s data,
which were not well fit by either model). Finally, the
estimates of sensitivity, and its standard error, derived
from the 2-ADC model were similar to those derived
from the indecision model for each observer (Figure
6B; p¼ 0.80, paired Wilcoxon signed rank test).

In summary, the three-parameter 2-ADC model fit
the data for a greater proportion of the observers while
yielding sensitivity estimates and goodness-of-fit scores
that were similar to those from the three-parameter
indecision model.

Comparison with an indecision model that incorporates
bias

We surmised that the failure of the indecision model
to the fit the data for four of the 18 observers was
because the model did not take into account choice bias
(unequal criteria) for detecting stimuli in the first versus
the second intervals. The data support this hypothesis:
For these observers, the rate of ‘‘undecided’’ responses
was markedly different when the target was presented
in the first versus second intervals (columns 7 versus 10
of Table 1, Garcı́a-Pérez & Alcalá-Quintana, 2010).
With equal detection sensitivities (l) for the two
intervals, the criteria for the two intervals must have
been unequal in order to explain this differential
pattern of guess (or NoGo) responses. Hence, we
extended the indecision model to incorporate different
criteria d1 and d2 for each interval (Figure 6C); a similar
extension has been proposed recently (Garcı́a-Pérez &
Alcalá-Quintana, 2013). Such an indecision model
‘‘with bias’’ is described by four parameters: l, d1, d2, k.

Once choice bias was incorporated, the indecision
model was able to successfully fit the data from all

Observer #1 Observer #2

Model 2-ADC 2-ADCX Indecision 2-ADC 2-ADCX Indecision

# parameters 4 5 5 4 5 5

bs (horizontal) 0.482 0.399 0.554 0.348 0.305 0.388

bt (vertical) 0.489 0.404 0.561 0.366 0.321 0.409

PSE (mm) 102.62 102.64 102.61 98.74 98.82 98.71

cA or dA 1.307 1.218 1.272 1.198 1.146 1.189

cB or dB 0.961 0.866 0.608 0.671 0.611 0.155

a n/a �0.385 n/a n/a �0.227 n/a

k n/a n/a 0.007 n/a n/a 0.012

AICc 10,676 10,649 10,646 11,010 11,001 11,002

BIC 10,697 10,676 10,672 11,031 11,028 11,029

DAICcindecision 30 3 0 8 �1 0

DBICindecision 25 4 0 2 �1 0

Table 1. Comparison of the 2-ADC, 2-ADCX, and indecision models in the length-discrimination task.
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observers but one (observer #4) at the 0.05 level. The
values of the two criterion estimates were different for
many of the observers, including for the four afore-
mentioned observers. As a result, the goodness-of-fit G-
statistic improved overall (median 6 std: 0.96 6 0.79),
indicating that incorporating bias is beneficial when
modeling behavior in this task. The 2-ADC model
already incorporates bias by allowing for unequal
criteria for the two intervals. Estimates of bias
(measured as the difference between criterion values
across the two intervals) in the indecision model (d1 –
d2) closely correlated with 2-ADC model estimates (c1 –
c2) for each observer (Figure 6D; correlation R2¼ 0.89,
p , 0.001; as before, data from observer #4 were
excluded from this, and subsequent, analyses).

The indecision model with bias has one more
parameter than the 2-ADC model. Hence, we com-
pared model quality with the (corrected) Akaike and
Bayesian Information Criteria (AICc, BIC; Burnham &
Anderson, 2002), which take into account the tradeoff
between model complexity and goodness of fit: The
model with the smaller value of AICc or BIC is
favored. Because the AICc (or BIC) value is based on
the logarithm of the maximum likelihood, AICc (or
BIC) values that are smaller even by a few (K) units for
one model represent an exponential increase in the
relative likelihood (eK/2) of that model.

AICc scores were comparable across models, and
the median difference in AICc scores across observers
(DAICc2-ADC�indecision ¼ 1) was not significantly
different from zero (p¼0.18, paired test). On the other
hand, BIC scores were significantly lower for the 2-
ADC model compared to the indecision model
(DBIC2-ADC�indecision ¼�3, p ¼ 0.016, paired test),
favoring the 2-ADC model over the indecision model
for explaining these data.

Comparison with an indecision model that excludes
finger errors

An AICc or BIC score favoring one model over
another could result from fewer parameters, better fit,
or both. Although the 2-ADC and indecision models
have corresponding sensitivity and criterion parameters
(d, c1, c2 vs. l, d1, d2), the indecision model contains an
extra parameter to model finger errors, k. k has been
referred to as a ‘‘non-sensory’’ parameter (Garcı́a-Pérez
& Alcalá-Quintana, 2010; their supporting information,
p. 4) that, as mentioned previously, is thought to reflect
inadvertent motor errors when reporting responses.
The inclusion of this parameter in the model is usually
justified, not by its relevance for explaining perceptual
confusion but for controlling for motor/finger errors in
order to obtain more accurate estimates of the
sensitivity and criterion parameters (Garcı́a-Pérez &
Alcalá-Quintana, 2010, 2013).

We fit the data with the indecision model excluding
the finger-error parameter and compared the fit of this
three-parameter indecision model (l, d1, d2) with the fit
of the three-parameter 2-ADC model (d, c1, c2). Because
the number of parameters were identical in the two
models, any differences in AICc or BIC scores must
reflect, specifically, differences in goodness of fit. As
finger errors were estimated to be less than ;5% for
most of the observers (Garcı́a-Pérez & Alcalá-Quintana,
2010, their table 1), we expected to obtain marginally
poorer fits and perhaps slightly different values for the
sensitivities and criteria when this parameter was
excluded from the model.

Surprisingly, with the finger-error parameter ex-
cluded, the indecision model failed to fit behavioral
data (at the 0.05 level) for two thirds (12/18) of the
observers (median p value¼ 0.001, randomization test).
Sensitivity and bias parameter estimates from the
indecision model differed significantly depending on
whether finger errors were or were not included in the
fit (Figure 6E and F, gray data; p , 0.001, Wilcoxon
signed rank test). In particular, sensitivity was system-
atically underestimated across subjects when the finger-
error parameter was excluded. In contrast, parameter
estimates from the 2-ADC model were virtually
identical regardless of whether the finger-error param-
eter was included or not (Figure 6E and F, white data;
p . 0.9).

In addition, comparing the AICc and BIC scores for
the two models revealed evidence overwhelmingly in
favor of the 2-ADC model (Figure 6F, inset): median
AICc and BIC values were significantly lower for the 2-
ADC model compared with the indecision model
(DAICc2-ADC�indecision¼�13; DBIC2-ADC�indecision¼
�13; p , 0.001, paired Wilcoxon signed rank test).
Conversely, incorporating a finger-error parameter into
the 2-ADC model did not improve the goodness of fit
(increase less than 0.05%): k estimates were vanishingly
small (less than 0.1%) across nearly all (16/18) observers
and were less than 2% for the other two observers.

These results indicate that the finger-error parameter
is not simply a desirable, but is rather necessary,
component of the indecision model for fitting these
data. On the other hand, the 2-ADC model successfully
explained the behavior of nearly all (16/18) observers
without incorporating a parameter for finger errors.
This finding highlights key caveats with attributing all
misidentified responses to a ‘‘non-sensory’’ parameter,
such as k (Discussion).

Experiment 2. Length discrimination: Modeling
competitive interactions

Next, we fit the m-ADC model to data from a
length-discrimination task that was based on a 2-
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ANFC paradigm. In this experiment, observers were
presented with two orthogonal lines, one vertical and
one horizontal in a L or a C (inverted L) configuration.
Observers had to indicate whether the vertical line was
perceived as being longer or shorter than the horizontal
line by pressing different keys. In addition, observers
could press a third key to express their ‘‘indecision’’
(NoGo). Psychometric functions of performance were
obtained with the length of the horizontal line
(standard stimulus) fixed at a reference value (104
pixels) while the length of the vertical line (test
stimulus) was varied pseudorandomly across eight
values (94–110 pixels). Two observers performed 1,600
trials each (100 trials at each of eight stimulus levels for
each of the two configurations). Other details regarding
the task and stimulus protocols can be found in Garcı́a-
Pérez and Alcalá-Quintana (2011a).

In the following analyses, we adhere to the notation
that was developed for each model by its respective
authors. Thus, the sensitivity and criterion parameters
in the 2-ADC model are referred to as di and ci,
respectively, whereas the analogous parameters in the
indecision model are referred to as li and di,
respectively.

We modified the 2-ADC model to explain behavior in
this discrimination task as schematized in Figure 7A
(described in detail in Appendix E, Supplemental Data).
As shown, the key conceptual difference was to limit the
domain of the NoGo response to a bounded region
defined by the criteria, cA and cB (in the conventional 2-
ADC model, the NoGo response domain is unbounded
on two sides). Such a modification was necessary for this
task because the observer must not only indicate whether
the test stimulus is of a different length from the
standard, but must also indicate whether it is longer or
shorter. Thus, the decision rule for the NoGo response is
–cB � WA � cA ˙ –cA � WB � cB, where WA and WB

denote the decision variable for each location, above and
below, respectively (Figure 7A). Note that this decision
rule is different from that of the conventional detection
model (which would be WA� cA ˙WB� cB) and permits
modeling data from two-alternative discrimination tasks
that incorporate a NoGo response. The model equations
relating sensitivity and criteria to response probabilities
are derived in Appendix E (Supplemental Data).

In line with empirical observations, psychophysical
functions of sensitivity (perceived length) were defined
as being linearly related to the physical length of the
stimulus. Thus, dz(x) ¼ bzx for the 2-ADC model, or
lz(x)¼ bzx for the indecision model (z¼ {s, t}), where s
and t refer to the standard (horizontal) and test
(vertical) stimuli, respectively (Garcı́a-Pérez & Alcalá-
Quintana, 2013). Due to the linearity of the psycho-
physical function for both test and standard stimuli, the
point of subjective equality (PSE) of the test to the
standard was calculated as PSE ¼ bs xs/bt, where xs is

the length of the standard stimulus (104 pixels). Thus,
the 2-ADC model incorporated four parameters (bs, bt,
cA, cB) whereas the indecision model incorporated five
parameters (bs, bt, dA, dB, k), k being the finger-error
term discussed previously.

Fits to the psychometric function of the 2-ADCmodel
(based on MLE) for each observer are shown in Figure
7B; fits of the indecision model are shown overlaid as
dashed lines (Garcı́a-Pérez & Alcalá-Quintana, 2013,
their figure 5). The estimated parameters of each model
are shown in Table 1 (columns headed 2-ADC and
Indecision). The 2-ADC model fits indicated that both
observers perceived vertical lines to be longer than
horizontal lines of the same physical length (bt . bs, the
vertical-horizontal illusion), in line with results from the
indecision model. Although the estimated values of bs

and bt were different between models, their relative
magnitudes (ratios) and, hence, the PSE for each
observer were nearly identical across models. In addition,
both models indicated that the observers exhibited a bias
for reporting the vertical line as longer when it was below
compared to when it was above the horizontal line (cB ,
cA; dB , dA). Despite these similarities, the indecision
model fared substantially better than the 2-ADC model
in fitting data for both observers (Figure 7B, dashed lines
vs. solid lines). In addition, AICc and BIC scores were
markedly lower for the indecision model; the differences
in AICc or BIC scores relative to the indecision model
were much larger for observer #1 compared to observer
#2 (Table 1). What might explain the poorer fits of the 2-
ADC model to these data?

We tested whether incorporating a finger-error
parameter into the 2-ADC model would improve its fits
to the data. This was not the case: Finger-error terms
were uniformly estimated to be vanishingly small (�
0.001%) for both observers as was the case in the
previous experiment. In contrast, the finger-error
parameter was critical for fitting these data with the
indecision model: Removing this parameter from the
indecision model caused fits to be substantially poorer
(AICc and BIC scores were worse by ;8–10).

Examining the deviation of the fits of the 2-ADC
model from the data revealed a systematic pattern: The
proportions of vertical test stimuli judged to be longer
than the horizontal standard were systematically over-
estimated by the model when the test stimuli were shorter
than the PSE value (Figure 6B, dashed vertical line) and
were systematically underestimated when the test stimuli
were longer than the PSE. These trends were most
apparent in the data from observer #1 (Figure 7B, left).

We hypothesized that these patterns of performance
could be explained by competitive interactions between
the vertical and horizontal percepts. The justification
for modeling such interactions in this task is the
following: In this task, observers were not asked to
simply report the perceived length of a vertical line but
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rather to compare its length against the length of a
horizontal line presented simultaneously on the display
and to report the longer stimulus. It is plausible that, in
order to make this judgment of relative length,
mutually competitive interactions occurred between the
perceptual (neural) representations that encoded hori-
zontal versus vertical orientations.

We modeled these putative interactions with an
additional parameter a as shown in Figure 7C (model
equations derived in Appendix E, Supplemental Data).
In the estimation process, we did not specify the sign of
a so that a positive value would indicate a facilitatory
interaction whereas a negative value would indicate a
competitive interaction between test and standard
stimuli. We refer to this 2-ADC model, which
incorporates an interaction term, as the 2-ADCX
model. This model, like the indecision model, incor-
porates five parameters (bs, bt, cA, cB, a).

MLE estimation with the 2-ADCX model revealed a
substantial improvement in the quality of the fits to
responses from both observers (Figure 7D; Table 1,
AICc and BIC values). Moreover, fits based on the 2-
ADCX model and the indecision model were virtually
indistinguishable (Figure 7D, solid lines vs. dashed
lines). Overall, the 2-ADCX model fit observer #2’s
responses somewhat better than the indecision model
and was only slightly poorer at fitting observer #1’s
responses (Table 1). The parameter estimates from the
2-ADCX model provided evidence for competitive
interactions between standard (horizontal) and test
(vertical) stimuli for both observers (a , 0) in this task.
Such interactions could not be readily identified with
the indecision model (Discussion). In the Discussion,
we elaborate on the relative advantages of each model
for analyzing behavior in nonforced choice detection
and discrimination tasks.

Discussion

With the growing use of multialternative tasks for
investigating the neural basis of perceptual and cognitive
phenomena, the need for developing new analytical
models and theoretical frameworks for analyzing such
tasks is being increasingly recognized (Churchland &
Ditterich, 2012; Niwa & Ditterich, 2008). In this study,
we have developed a theoretical model that decouples
the effects of choice bias from those of perceptual
sensitivity in multialternative detection tasks. We
demonstrated an optimal, one-to-one mapping of the
model parameters to the response probabilities and
presented numerical methods for estimating model
parameters reliably. Finally, we have demonstrated ways
in which the model may be readily extended to
discrimination tasks that permit NoGo responses.

Our model is able to decouple bias from sensitivity
effects in m-ADC tasks, first, by treating responses at
each possible location separately and independently as
opposed to the conventional practice of aggregating
data across locations by simply classifying responses as
‘‘correct’’ or ‘‘incorrect.’’ Psychometric functions based
on such aggregated responses could incorrectly suggest
that behavioral data are adequately fit with a bias-free
model even when substantial choice bias exists in the
data (Figure 3E). Second, the model allows for a
distinct response category for NoGo responses, which
permits decoupling uncertainty-associated response
biases from other perceptual or decisional biases
(discussed subsequently).

Our model is particularly relevant for tackling a
central question in neuroscience studies of perception
and attention: Does improved performance at the cued
location (or for the cued feature) arise from higher
perceptual sensitivity at that location (or for that feature)
or from a greater choice bias favoring the cued location
(or feature) (Cohen &Maunsell, 2009; McPeek & Keller,
2004; Ray & Maunsell, 2010; Zenon & Krauzlis, 2012)?
Neuroscience studies of spatial attention and decision-
making commonly employ multialternative detection
tasks based on the method of constant stimuli (constant-
stimulus design): Neural responses can be highly
variable, and in order to obtain reliable estimates of the
neurometric function, the same stimulus must be
repeatedmany (tens to hundreds of) times. Hence, neural
(and consequently, behavioral) responses are measured
at a fixed set of stimulus strengths determined a priori.
The m-ADC model (Equation 6) provides a powerful
tool for estimating an animal’s perceptual sensitivity
while accounting for choice bias in such multialternative
constant-stimulus designs.

In any behavioral model, demonstrating model
identifiability is necessary to interpret the behavioral
significance of absolute (or relative) parameter values
(Brunton, Botvinick, & Brody, 2013). The m-ADC
model is among the most parsimonious class of
analytical models for multialternative detection as a
result of several key assumptions (discussed next). This
parsimony permitted us to analytically demonstrate the
one-to-one mapping of the sensitivity and bias param-
eters to response probabilities in multialternative tasks
with any number of alternatives (models of arbitrarily
high dimensions). Such an analytical demonstration is
considerably more challenging, and often never ac-
complished, for more complex models.

Assumptions and extensions of the m-ADC
model

The m-ADC model is founded on several assump-
tions: (a) decision variables are independent and
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represented along orthogonal dimensions, (b) signal
and noise distributions have equal variance, (c) decision
boundaries are linear (or planar), and (d) decision
boundaries (criteria) do not vary over time (or trials).
In the following, we discuss which of these assumptions
are reasonably justified and which can be addressed by
extending the model.

The assumption of independent decision variable
distributions that are represented along orthogonal
dimensions (independent channels) has been tested in
the two-dimensional case and found valid for stimulus
attributes that are widely different perceptually (for
instance, stimuli that are widely separated in space or
frequency) (Tanner, 1956). However, it is possible that
the Wi � s are not independent, and perceptual
sensitivities do not vary along orthogonal dimensions:
Signal covariation may arise from facilitative or
competitive interactions that operate across locations.
Thus, decision variable distributions at different
locations could be correlated, or, equivalently, decision
variable axes could be separated by angles different
from 908. In this case, the covariance matrix of W is no
longer diagonal. The 2-ADCX model (Figure 7C)
incorporates such interactions for the two-alternative
task. This model could be extended to the multi-
alternative case as well.

Equal variance for the signal and noise distributions is
a fundamental assumption of conventional signal-
detection models. Such an assumption permits defining a
monotonic relationship between the likelihood ratio and
the sensory evidence that simplifies the optimal decision
rule (a single cut point or criterion, Macmillan &
Creelman, 2005, pp. 67–69). In addition, previous studies
have demonstrated, both analytically and empirically,
that models in which the mean and variance of the
decision variable distribution change with the stimulus
level (e.g., Poisson decision variables) are essentially
unidentifiable (Katkov, Tsodyks, & Sagi, 2006).

We have demonstrated that, for additive Gaussian
signal and noise distributions, planar hypersurfaces
(hyperplanes), as defined by the choice criteria in the
model, constitute a family of optimal decision surfaces.
A subset of decision surfaces in the current model (of
the form Wi – Wj¼ ci – cj) is optimal only if the values of
sensitivity (d) are identical across locations (di ¼ d �i,
Figure 8A, left). In certain experiments, such as when a
particular spatial location is cued for attention, it is
possible that the sensitivities at different locations (e.g.,
cued vs. uncued) could be significantly different. The
model may then be extended with a modified decision
rule to capture optimal decision-making in this more
general scenario of unequal sensitivities (Figure 8A,
right).

In its present form, our model does not take into
account criterion variation over time. For commonly
used 2-AFC tasks, changes in criteria have an effect

equivalent to increasing the variance of the decision
variable distribution, failing to account for which
results in an underestimation of sensitivity (Benjamin,
Diaz, & Wee, 2009; DeCarlo, 2010). The effect of such
criterion variation can be modeled by incorporating the
distribution of criteria into the latent variable formu-
lation, in future extensions of the model.

Our model does not take into account nonzero lapse
rates. Such lapse rates may arise due to a variety of
factors, including lapses of attention or motor errors.
Such a finger-error parameter was superfluous when
fitting behavioral data with the 2-ADC model (dis-
cussed subsequently). In general, however, lapse rates
can be incorporated into this framework by specifying
a two-stage model with the first stage capturing lapse-
free performance with the m-ADC model and the
second stage accounting for lapses in performance.

Finally, although not an assumption of the model, our
task specification requires that no more than one
stimulus be presented in a given trial. A particular
advantage of this task specification is that potential
second- and higher-order interaction terms (of the form
Xi Xj, Xi Xj Xk, . . .) in the structural model vanish
automatically (as at least one Xi¼ 0). Tasks that violate
this requirement and incorporate compound stimuli
(e.g., stimuli presented at more than one location or
more than one stimulus feature presented in a given trial)
fall under the purview of the General Recognition
Theory (GRT, Ashby, 1992) framework (discussed next).

Relationship to previous signal detection
models

Relationship to forced choice models

Our model represents a theoretical approach to
account for bias effects in multialternative detection
tasks. An alternate, and equally important, approach
involves developing behavioral paradigms and mea-
surement protocols that minimize bias. One such
paradigm—the two-interval forced choice (2-IFC) or
two-alternative forced choice (2-AFC) task—has been
a popular choice for psychophysics measurements
across a variety of fields (Yeshurun et al., 2008). In a 2-
IFC task, such as the target-detection task described
previously, the stimulus (or change) can be presented in
one of two nonoverlapping temporal intervals, and the
observer is rewarded for reporting the interval (first vs.
second) in which the stimulus (or change) occurred. It is
commonly held that such tasks provide ‘‘unbiased’’
estimates of sensitivity because there is no inherent
difference in the cost of making an error among the
intervals. The same argument has been applied to the 2-
AFC task involving two stimulus alternatives, in which
there is no difference in the cost of making an error
among the two alternatives.
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However, recent research demonstrates that the
problem of choice bias is highly relevant for two- (and
multi-) interval forced choice designs as well (Macmil-
lan & Creelman, 2005; Yeshurun et al., 2008).
Yeshurun et al. (2008), after reanalyzing 17 past
experiments of the 2-IFC design, conclude categorically
that there is ‘‘little evidence supporting the claims that
2-IFC is unbiased’’ (p. 1837). Moreover, Macmillan
and Creelman (2005), in their discussion of bias in
interval identification designs, cite, among other
examples, a study by Johnson, Watson, and Kelly
(1984) who ‘‘observed that p(c) [percent correct] was
higher for the third interval of a [three-interval] design
than for the first. Such a result could arise from either
bias or sensitivity changes across intervals’’ (Macmillan
& Creelman, 2005, pp. 251). Thus, empirical evidence
demonstrates that accounting for bias is fundamental
to models of multi-interval or multialternative forced
choice designs as well.

A recent study developed a signal detection model
with bias for multialternative (and multi-interval)
forced choice (m-AFC) tasks (DeCarlo, 2012). How
does the m-ADC model differ from the m-AFC model
that incorporates bias?

As illustrated in Figure 8A and B, for the two-
alternative case, the key distinction is in the way each
model partitions decision space. The 2-ADC model
permits one more response category, the NoGo
response, than the 2-AFC task. As the figure demon-
strates, the 2-AFC model can be reduced to an
equivalent, one-dimensional model by a linear trans-
formation of the decision variables (differencing), and,
in fact, previous studies have almost always employed
such a one-dimensional formulation. On the other
hand, no such transformation can reduce the 2-ADC
model to an equivalent one-dimensional model; this is
because the 2-ADC decision rule is fundamentally two-
dimensional. The m-ADC model is a more general
version of the m-AFC model with bias, and this
relationship is formally derived in Appendix F
(Supplemental Data). Hence, the analytical results we
have proved above for the m-ADC model (identifi-
ability, optimality) are all valid for the m-AFC model
(with bias) as well.

What is the advantage of incorporating a NoGo
response in multialternative designs? The m-ADC
decision rule specifies that the observer exercises the
NoGo response option when there is insufficient
evidence for the target stimulus at any location. Thus,
NoGo responses in a multialternative detection task
provide the natural analog of ‘‘No’’ responses in a simple
detection (Yes/No) task. When catch trials are included
in a multialternative task design, we have shown,
analytically, that employing the m-ADC decision rule
with NoGo responses maximizes success. Previous
studies have shown that response biases can be induced

when observers are required to guess based on equivocal
sensory evidence in a forced choice task: Incentivizing a
NoGo response when the observer is uncertain of the
correct (Go) choice prevents conflating such uncertainty-
associated response biases with existing perceptual or
decisional biases (Garcı́a-Pérez & Alcalá-Quintana,
2013; see also next section on ‘‘Relationship to the
indecision model’’). On the other hand, care must be
taken not to overincentivize the NoGo response so that
the observer does not adopt a strategy of never giving a
Go response when weak stimuli are presented; such a
strategy could render it difficult to reliably estimate
perceptual sensitivity for such stimuli. Thus, the
appropriate incentive (reward) for a NoGo response
depends, crucially, on a balance of these two factors.

What is the advantage of incorporating catch trials
in multialternative designs? It has been commonly
proposed that choice biases occur in trials that are
difficult for the observer when sensory evidence is weak
or equivocal, for example, at low target stimulus
contrasts (Fechner, 1860/1966; Jogan & Stocker, 2014).
Our results (Figure 3C and D) demonstrate that, even
when choice bias occurs for stimuli of all strengths, the
effects of choice bias are simply most apparent at the
weaker stimulus strengths (deviation between data and
bias-free model for low n). At higher strengths, the
psychometric functions of models with and without
bias approach each other closely (e.g., Figure 3C and D
solid vs. dashed curves at n . 0.5). Thus, it may be
difficult, in practice, to identify the occurrence of choice
bias with stimuli of high strengths alone. Catch trials,
which are essentially zero stimulus strength trials,
provide an elegant and efficient means to identify and
account for choice bias in such multialternative tasks.
In addition, the inclusion of catch trials reduces the
standard error of parameter estimates (Garcı́a-Pérez &
Alcalá-Quintana, 2011b).

Finally, there is an important advantage to incorpo-
rating catch trials and NoGo responses in studies that
seek to measure differences in perceptual sensitivity at
two different (e.g., cued vs. uncued) locations with a
target stimulus of a fixed strength (e.g., at a threshold
value identified in preliminary experiments): With a
single, non-null, stimulus level at each location and a
binary forced choice response, the sensitivities at the two
locations become unidentifiable. The geometric intuition
for this is as follows: Because there are an infinite
number of orthogonal axes (whose origins lie on a
Thales circle) that pass through the centers of the signal
distributions, the value of perceptual sensitivity at each
location cannot be identified; such an identification
becomes possible if the origin is fixed based on a referent
distribution provided by the catch trials. The relevance
for attention tasks is that, although it is possible to
measure the animal’s accuracy at discriminating between
target stimuli at the cued versus uncued locations, it is

Journal of Vision (2014) 14(9):16, 1–32 Sridharan, Steinmetz, Moore, & Knudsen 22

http://
http://
http://www.journalofvision.org/content/14/9/16/suppl/DC1
http://www.journalofvision.org/content/14/9/16/suppl/DC1


impossible to determine if the sensitivity for detecting
targets (or changes) is different between the cued and
uncued locations based on a single value of stimulus
strength (or change magnitude) at each location.

Relationship to the indecision model

The indecision model (Garcı́a-Pérez & Alcalá-Quin-
tana, 2011b), formerly known as the ‘‘difference model
with guessing’’ (Garcı́a-Pérez & Alcalá-Quintana,
2010), is suitable for analyzing data from ternary choice
tasks that permit a NoGo response. Tasks that
incorporate such NoGo (or ‘‘Don’t Know’’) responses
are often referred to as unforced choice or nonforced
choice tasks (Fechner, 1860/1966; Garcı́a-Pérez &
Alcalá-Quintana, 2010; Kaernbach, 2001; Watson,
Kellogg, Kawanishi, & Lucas, 1973). The indecision
model has been formulated (and applied) to model
behaviors in 2-ANFC tasks (Garcı́a-Pérez & Alcalá-
Quintana, 2010, 2011b, 2013).

We have depicted the indecision model in a two-
dimensional decision space to facilitate comparison with
the 2-ADC model, specifically to highlight how the two
models differ in the way they partition decision space.
Nevertheless, the indecision model (along with its
decision rule) is essentially one-dimensional and can be
readily rendered as such with an appropriate linear
transformation of decision variables (WS¼W1 – W2,
Figure 8C). Indeed, previous studies have exclusively
employed such a one-dimensional formulation of the
indecision model (e.g., Garcı́a-Pérez & Alcalá-Quinta-
na, 2010, 2011b, 2013), and the same one-dimensional
formulation was employed in our analyses that repli-
cated the results of previous studies (Figures 6 and 7).
Our m-ADC model is the first and only model, to our
knowledge, that can be applied to data from unforced
choice tasks with any number (three or more) of
alternatives, based on a multidimensional formulation.

The difference in the two partitioning schemes (Figure
8A vs. C) also highlights an important distinction
between the NoGo response alternative in the indecision
versus 2-ADC models. In the indecision model, the
decision rule specifies that a NoGo response is made
when sensory evidence is equivocal about the presence
of the target stimulus at either location (i.e., when the
observer is uncertain). On the other hand, in the 2-ADC
model, the decision rule specifies that a NoGo response
is made when sensory evidence is sufficiently strong for
no target stimulus at either location. In future experi-
ments, it may be instructive to ask observers to
separately report each type of NoGo response. Never-
theless, these differences demonstrate that the m-ADC
decision rule is a more natural choice for modeling
behavior in multialternative detection tasks in which
NoGo responses should reflect the observer’s decision

that no stimulus was presented rather than her/his
uncertainty about where a stimulus was presented.

To illustrate this point further, consider an observer
who performs a 2-ADC task and is aware that the
target stimulus is presented at no more than one
location in a given trial. If the magnitude of sensory
evidence is high at both locations in a given trial, the
observer would infer the presence of a stimulus
somewhere on the display although she/he may not be
able to localize it accurately. In this case, it is
reasonable to propose that the observer would report
the location at which the signal was the strongest or
exceeded the criterion by the greatest magnitude (e.g.,
Figure 8A, left, blue/Go response region near the upper
right corner of decision space): This is the 2-ADC
decision rule. In contrast, the indecision model specifies
that, in this case, when sensory evidence is comparable
across the two locations, the observer would give a
NoGo response (e.g., Figure 8C, gray/NoGo response
region near the upper right corner of decision space).

We compared the performance of our 2-ADC model
to that of the indecision model, using previously
published data in 2-ANFC tasks (Garcı́a-Pérez &
Alcalá-Quintana, 2010, 2011a). Our results revealed
that behavior in these tasks could be fit with the 2-ADC
model (or its extension, the 2-ADCX model) with
comparable goodness of fit to the indecision model
(Table 1, Figure 7D). In addition to establishing the
empirical validity of the 2-ADC model, these results
suggest that the observers’ behavioral strategies (2-
ADC vs. indecision), by and large, could not be
distinguished with these tasks. In many cases, the 2-
ADC model outperformed the indecision model based
on information criterion scores (AICc or BIC; e.g.,
Figure 6F, inset, or Table 1); however, in a few cases,
such as that of observer #15 in the target-detection
experiment, the 2-ADC model fared relatively poorly.
Under what conditions might each model fare better or
worse in fitting behavior for individual observers?

As mentioned previously, in the task of Garcı́a-Pérez
and Alcalá-Quintana (2010), observers were instructed
to press the NoGo response key when they could not
tell in which interval the target had occurred. Despite
these clear instructions, observers could have construed
the instructions in at least one of two ways: to give a
NoGo response when they were unsure in which
interval the target occurred (indecision model) or to
give a NoGo response when they were certain that no
interval contained the target (2-ADC model). In this
task, no targets were presented in a third of all trials:
This high proportion of catch trials increases the
chances that observers followed a 2-ADC decision rule
to maximize success (Methods, Appendix D). In such
ternary response tasks, it is also possible that observers
follow a ‘‘hybrid’’ model, giving NoGo responses both
when uncertain of the interval and when certain of not
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having detected a stimulus in either interval. In this
case, performance would be more in accordance with
the 2-ADC model at low stimulus strengths when the
decision variable distributions approach the ‘‘absence’’
NoGo response region (Figure 8A, gray shading). On
the other hand, performance would follow the indeci-
sion model at suprathreshold strengths, with NoGo
responses indicating ‘‘uncertainty.’’

In general, the suitability of each model would also
be determined by the payoff matrix (relative costs of
errors and benefits for correct responses) for each task.
Thus, the indecision model is likely to be suited to
fitting data from tasks in which there is a high cost for
misidentification (reporting the wrong stimulus loca-
tion or interval; Table S1B, Supplemental Data) and a
relatively low cost for misses. In such a circumstance, a
rational observer would refrain from ‘‘guessing’’ when
sensory evidence is equivocal for the two stimulus
events and would rather give a NoGo response because
a miss is less severely penalized. On the other hand, the
2-ADC model is better suited to model the vast
majority of detection tasks used in neuroscience studies
of attention and decision-making. In these tasks, the
cost of a misidentification (Go response to the wrong
location in a Go trial) and the cost of a miss (NoGo
response in a Go trial) are essentially the same (usually
withheld reward). As we have demonstrated, the 2-
ADC model is optimal for fitting data from multi-
alternative detection tasks under these conditions.

Fitting each model to the data raised important
issues regarding the differential contribution of sensory
versus motor factors to misidentified responses, par-
ticularly, with the validity of interpreting the ‘‘finger-
error’’ parameter k as ‘‘nonsensory.’’ k has been
described as being ‘‘irrelevant’’ to the core indecision
model (Garcı́a-Pérez & Alcalá-Quintana, 2010, their
supporting information, p. 4) but is useful for obtaining
more accurate estimates of the other model parameters
(Garcı́a-Pérez & Alcalá-Quintana, 2010). Yet we found
that behavioral performance for more than two thirds
of the observers could not be adequately fit without
including this parameter in the indecision model. In
contrast, a finger-error term was not necessary for the
2-ADC model: Incorporating this parameter did not
result in any improvements in model fits, and the term
was uniformly truncated to vanishingly small values for
most observers in both tasks.

Finger errors provide a necessary and convenient
motoric explanation for misidentified responses in the
indecision model. On the other hand, such misidentified
responses readily arise from sensory factors in the 2-
ADC model. The reason for this key difference is the
following: In the indecision model, the two Go
response domains do not share a common decision
boundary—they are separated by the ‘‘indecision’’ (or
indifference) zone (Figure 8C, gray)—whereas in the 2-

ADC model, the two Go response domains do share a
common boundary (Figure 8A), and misidentified
responses can readily arise from sensory noise fluctu-
ations. Our results highlight the potential for sensory
confusion to be misinterpreted as motor errors, a
possibility that has been overlooked previously.

Did misidentified responses arise predominantly
from sensory factors (according to the 2-ADC model)
or motor factors (according to the indecision model)?
Because the 2-ADC model without finger errors fit the
data as well as or, often, even marginally better than
the indecision model with finger errors, either expla-
nation is possible, and the explanations are not
mutually exclusive. To resolve this issue, it would be
worthwhile to obtain an independent measure of finger
errors from each observer (e.g., with a postexperiment
questionnaire) in future experiments. Additional inde-
pendent evidence (e.g., with neural recordings) could
also help resolve which factor contributed predomi-
nantly to these erroneous responses.

In fitting the observers’ behavior in Experiment #2
(the length-discrimination task), we have demonstrated
two key ways in which the 2-ADC model can be
extended. First, we showed that by modifying the
decision rule, the model could be readily adapted to
model behavior in discrimination tasks. Next, we
showed that by introducing an additional parameter,
we could readily model interactions (competitive or
facilitative) among the decision variable components
that encode the strengths of the different percepts. This
extended 2-ADCX model fit each observer’s data as
well as did the indecision model (Figure 7D) of equal
complexity (five parameters in each model).

The 2-ADCX model provided evidence for compet-
itive interactions between horizontal and vertical
percepts. Such interactions can be modeled only with a
two-dimensional formulation (Figure 7C). The indeci-
sion model, in its current one-dimensional formulation,
cannot model such interactions although future exten-
sions of the model to two (and higher) dimensions may
permit such modeling. In the one-dimensional indeci-
sion model, competitive interactions would manifest as
an inflated value of bt (vice versa for facilitative
interactions) as can be inferred from Figure 7C. Indeed
we noticed that estimates of bt were consistently higher
for the indecision model compared to the 2-ADC or 2-
ADCX models (Table 1). This result highlights a key
advantage of the two-dimensional formulation of the 2-
ADC model: It readily enables modeling interactions
that occur among the decision variable components.

Relationship to general recognition theory and choice
theory

Our m-ADC model follows a rich literature on
multidimensional (or multichannel) signal detection
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models within the framework of GRT (Ashby, 1992).
In the psychoacoustic and vision literature, GRT
models have been widely applied in tasks involving the
detection of multiple signals in noise (Ashby, 1992;
Ashby & Townsend, 1986). These models are relevant
for tasks that implement a feature complete identifica-
tion design (Macmillan & Creelman, 2005, p. 260). This
task design involves discriminating four potential
stimulus events (Figure 8D): noise alone (black), each
stimulus alone (red or blue), or the compound stimulus
(purple, ‘‘Both’’; Yeshurun et al., 2008). Such a four-
way (2 · 2) discrimination simplifies the optimal
decision rule (orthogonal pairs of lines) for Gaussian
signals and noise (Figure 8D, thick black lines) (Ashby
& Townsend, 1986).

In m-ADC tasks, the stimulus (or change) occurs at
no more than one location in a given trial; the last
stimulus event (compound, ‘‘Both’’) of a GRT design is
never presented. Thus, the GRT model and decision
rule do not apply to m-ADC tasks. In addition, in the
absence of interactions among the decision variables,
the GRT model can be reduced to two (or multiple)
independent one-dimensional formulations (Figure 8D,
shown alongside each margin). As mentioned previ-
ously, the m-ADC model cannot be thus reduced,
essentially, because the decision manifold is irreducibly
multidimensional.

A variety of models for dealing with bias in
multialternative tasks have been formulated within the
framework of Luce’s choice theory (Luce, 1963), and
standard methods in textbooks of behavioral analysis
account for bias with a choice theory model (Macmil-
lan & Creelman, 2005, p. 250). However, previous
studies have favored SDT over choice theory for
explaining behavioral data: Although choice theory
constrains decision variables to follow a double
exponential distribution (or logistic distribution for the
binary choice case), SDT provides a more general
framework in which the decision variable distribution
can be specified based on empirical observations
(Treisman & Faulkner, 1985). Moreover, evidence from
behavioral data favor the normal distribution associ-
ated with the conventional signal detection model
(Treisman & Faulkner, 1985).

Surprisingly, few attempts have been made to deal
with bias in multialternative detection tasks within the
signal detection framework. Early attempts at two-
dimensional ‘‘detection and recognition’’ or (‘‘detec-
tion and identification’’) models (Swets & Birdsall,
1956; Tanner, 1956), although conceptually similar to
the m-ADC model, were geometrically formulated.
Later studies attempted to develop a mathematical
formalism for these models by treating the decision
variable as a random vector (Thomas & Olzak, 1992)
akin to the multivariate decision variable in the m-
ADC model. These models were formulated for

double judgment (detection and identification) tasks.
The importance of accounting for bias to avoid
spurious conclusions in multidimensional models for
such double judgment tasks has been discussed by
others (Klein, 1985). However, these early formula-
tions were based on 2 · 2 complete identification
designs, i.e., those that incorporate the compound
stimulus (Figure 8D) (Olzak & Thomas, 1981; Thomas
& Olzak, 1992).

On the other hand, psychophysical tasks of detection
and attention, such as those presented in this study
(Figure 1) and elsewhere (Cavanaugh & Wurtz, 2004;
Cohen & Maunsell, 2009), do not fit the conventional
GRT framework. Hence, although the mathematical
formalism in previous multidimensional GRT models
resembles the m-ADC model, the decision rule is
fundamentally different. The m-ADC model solves the
important open problem of accounting for bias in
multialternative detection tasks by incorporating a
novel, asymmetric decision rule (unequal criteria) in a
multidimensional signal detection framework.

Conclusion

Behavior emerges from a combination of various
factors: perceptual, motivational, decisional, and the
like. Parsing the respective contributions of each factor
to behavior is currently best accomplished by recourse
to theoretical frameworks, such as SDT (Carandini &
Churchland, 2013). The m-ADC model developed in
this study provides a rigorous framework for distin-
guishing aspects of behavior that arise from changes in
perceptual sensitivity from those that arise from
changes in choice bias in multialternative detection
tasks. Future work will involve extending this model to
incorporate the influence of executive and cognitive
processes, such as attention, on sensitivity and bias as
well as validating and refining the model to describe
behavior in other tasks of perceptual decision-making.

Methods

Linking sensitivities and criteria to 2-ADC
response probabilities

In the 2-ADC model, the probability of response at
each location (Y ¼ i) for each stimulus event (X) can
be derived from the structural model (Equation 1)
and decision rule (Equation 2). We illustrate the case
for p(Y ¼ 1jX). The other cases may be similarly
derived.

The probability of response at location 1 is the
combined probability that the decision variable at
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location 1 exceeds the choice criterion at that location
and that its magnitude (over its choice criterion) is the
larger of the two locations.

pðY ¼ 1jXÞ ¼ pðW1 . c1˙W1 � c1 . W2 � c2Þ
which, upon substitution of the structural model, gives

pðY ¼ 1jXÞ
¼ pðe1 . c1 � d1X1 ˙e1 þ d1X1 � c1

. e2 þ d2X2 � c2Þ:
We condition the above probability on a given value

of e1¼ e1.

pðY ¼ 1jX; e1 ¼ e1Þ
¼ pðe1 . c1 � d1X1 ˙e1 þ d1X1 � c1 . e2 þ d2X2

� c2Þ
¼ Hðe1 � c1 þ d1X1Þ pðe2 , e1 þ d1X1 � d2X2

� c1 þ c2Þ
¼ Hðe1 � c1 þ d1X1ÞF2ðe1 þ d1X1 � d2X2

� ðc1 � c2ÞÞ
where H(x) is the Heaviside function, and F2 represents
the cumulative distribution function (CDF) of e2.

The conditional probability for a response at
location 1 is found by integrating over the distribution
of e1.

pðY ¼ 1jXÞ

¼
Z ‘

�‘

Hðe1 � c1 þ d1X1ÞF2ðe1 þ d1X1 � d2X2

� ðc1 � c2ÞÞ f1ðe1Þ de1

where f1 represents the probability density function of
e1.

The Heaviside function may be dropped from the
integrand by defining the lower bound of the integral at
c1 – d1 X1. In other words,

pðY ¼ 1jXÞ

¼
Z ‘

c1�d1X1

F2ðe1 þ d1X1 � d2X2 � ðc1 � c2ÞÞ

· f1ðe1Þ de1:

Similarly, the conditional probability of a response
at location 2 is given by

pðY ¼ 2jXÞ

¼
Z ‘

c2�d2X2

F1ðe2 þ d2X2 � d1X1 � ðc2 � c1ÞÞ

· f2ðe2Þ de2:

In conventional SDT, the noise distribution is
assumed to be a unit variance Gaussian (unit normal)
distribution. Thus f1¼ f2¼ / and F1¼ F2¼U where /
and U are respectively the probability density and
cumulative distribution functions of the unit normal
distribution.

Finally, the conditional probability of a NoGo
response, p(Y ¼ 0jX), can be calculated by observing
that the NoGo decision region in Figure 2C is simply a
quadrant of two-dimensional decision space. Because
W1 and W2 are independent, this can be readily shown
to be

pðY ¼ 0jXÞ

¼
Z c1

�‘

/ðe1 � d1X1Þde1

Z c2

�‘

/ðe2 � d2X2Þde2

¼ Uðc1 � d1X1ÞUðc2 � d2X2Þ:

It can be easily verified that p(Y ¼ 0jX) ¼ 1 – p(Y ¼
1jX) – p(Y ¼ 2jX).

These equations together constitute the 2-ADC model
system (reproduced in the results as Equation system 3).

pðY ¼ 1jXÞ

¼
Z ‘

c1�d1X1

Uðeþ d1X1 � d2X2 � c1 þ c2Þ/ðeÞ de

pðY ¼ 2jXÞ

¼
Z ‘

c2�d2X2

Uðeþ d2X2 � d1X1 � c2 þ c1Þ/ðeÞ de

pðY ¼ 0jXÞ ¼ Uðc1 � d1X1ÞUðc2 � d2X2Þ
where we have replaced e1 and e2 with the variable e
because e1 and e2 are simply dummy variables of
integration.

Linking sensitivities and criteria to m-ADC
response probabilities

We derive the psychometric function at location i
(probabilities of response at location Y ¼ i, as a
function of stimulus strength nk at each location k),
based on the structural model (Equation 4) and
decision rule (Equation 5) in the m-ADC model:

pðY ¼ ij nÞ
¼ pððWi . ciÞ˙ ðWi � ci . W1 � c1Þ

˙ ðWi � ci . W2 � c2Þ . . .
˙ ðWi � ci . Wm � cmÞÞ:
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Upon substitution of the structural model, this gives:

pðY ¼ ijnÞ
¼ pððei . ci � diðniÞÞ˙k;k 6¼i ðei þ diðniÞ � ci

. ek þ dkðnkÞ � ckÞ:
Similar to the 2-ADC case, we condition the above

probability on a given value of ei ¼ ei.

pðY ¼ ijn; eiÞ
¼ pððei . ci � diðniÞÞ˙k;k6¼iðei þ diðniÞ � ci

. ek þ dkðnkÞ � ckÞ
¼ Hðei � ci þ diðniÞÞ˙k;k 6¼ipðek , ei þ diðniÞ

� dkðnkÞ � ci þ ckÞ
¼ Hðei � ci þ diðniÞÞ

3
Y
k;k6¼i

Fkðei þ diðniÞ � dkðnkÞ � ci þ ckÞ

where H(x) is the Heaviside function, and Fk represents
the cumulative distribution function of the decision
variable distribution at location k, Wk. In deriving this
expression, we have used the fact that the Wk

distributions are mutually independent, such that their
joint probability density factors into the product of the
individual densities.

The probability of a response at location i is then
found by integrating over the probability density of
ei.

pðY ¼ ijnÞ

¼
Z ‘

�‘

Hðei � ci þ diðniÞÞ

3
Y
k;k 6¼i

Fkðei þ diðniÞ � dkðnkÞ � ci þ ckÞ fiðeiÞ dei

¼
Z ‘

ci�diðniÞ

Y
k;k 6¼i

Fkðei þ diðniÞ � dkðnkÞ � ci þ ckÞ

3 fiðeiÞ dei
Analogous to the two-dimensional case, the condi-

tional probability of a NoGo response, p(Y¼ 0jn), can
be calculated by observing that the NoGo decision
region in the m-ADC model is simply a orthant (2m-
tant) in m-dimensional decision space. Again, based
on the independence of the Wi-s this can be shown to
be

pðY ¼ 0j nÞ ¼
Y
k

Fjðck � dkðnkÞÞ:

Again, in line with conventional SDT, we assume
unit normal noise distributions. Thus, fi¼/ and Fi¼U.
Replacing the dummy variables of integration ei with e,
we have

pðY ¼ ij nÞ

¼
Z ‘

ci�diðniÞ

Y
k;k 6¼i

Uðeþ diðniÞ � dkðnkÞ � ci þ ckÞ

3 /ðeÞ de

pðY ¼ 0j nÞ ¼
Y
k

Uðck � dkðnkÞÞ:

This constitutes the m-ADC model system of
equations relating the psychometric function of each
response (Go or NoGo) to the psychophysical function
(dj(nj)) and criterion cj at each location, j (reproduced in
the results as Equation system 6).

MLE and MCMC estimation of sensitivities and
criteria in the m-ADC model

Simulations and parameter estimation

2-ADC responses were simulated as follows: Re-
sponse probabilities were computed from Equation
system 3 based on the set of criteria and sensitivities
specified in Table S2A (Supplemental Data). We
denote the response probabilities as Pr

s. Response
counts for each stimulus–response contingency were
generated with random sampling from a multinomial
distribution defined by the Pr

s. This procedure was
repeated for 20 simulated experimental blocks (or
‘‘runs’’) with 100 trials for each of the two stimulus
events and 200 catch trials per run (a total of N ¼
4,000 trials in 20 blocks). The resulting total response
counts, Or

s (Table S2B, Supplemental Data) were
provided as input to numerical optimization algo-
rithms for parameter recovery.

We employed two approaches: (a) maximum likeli-
hood estimation (MLE) with a line search (ML-LS)
algorithm or (b) Bayesian estimation based on a
Markov Chain Monte Carlo (MCMC) approach with
the Metropolis algorithm (Methods). The ML-LS
algorithm is an efficient approach for MLE but could
converge onto a local extremum of the objective
function. The MCMC algorithm, although compara-
tively slower, has a component of stochastic sampling
(Methods) and, hence, a better chance of finding global
minima. In addition, the MCMC approach provides a
full posterior distribution over parameter values that is
useful for testing for significant differences across
experimental conditions.

Both the ML-LS (Figure 3A and B) and MCMC
algorithms (Figure S3A and B, Supplemental Data)
converged reliably onto identical values of the four
parameters ({di, ci}, i � {1, 2}) for various initial guesses
(Table S2C, Supplemental Data). In these figures, the
search trajectory in four-dimensional parameter space
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is depicted as two two-dimensional trajectories, one for
each pair of criterion and sensitivity parameters.

The MCMC algorithm required an initial burn-in
period (about 500 iterations, Figure S3C) to converge
to a stable parameter set; the chi-square error value
reduced and the log-likelihood value increased sys-
tematically over successive iterations (Figure S3D). The
posterior distribution was generated with the parameter
values from the last 1,000 iterations, well after the
burn-in period of the MCMC algorithm (Figure S3E,
Methods). Error estimates of the parameters were also
highly similar between the two estimation approaches
(Table S2C).

2-ADC psychometric functions (Figure 3C and D)
were simulated as follows: Response probabilities were
computed from Equation system 6 with a hyperbolic
ratio psychophysical function based on the set of
parameters specified in Table S3A (Supplemental
Data). The simulated psychometric function was
sampled at six equally spaced values of contrast (nk �
[0, 100]) with 50% catch trials and 25% stimulus trials
at each of the two locations; this process was repeated
for 100 simulated experimental blocks (1,000 trials per
contrast value for each simulation). As before, we
denote these by Pr

s(nk) (Figure 3C and D circles, error
bars denote standard deviations across simulation
blocks), corresponding to the probability of response at
location r when a stimulus is presented at location s
with contrast nk (k¼ 1–6).

In each case, we evaluated response probabilities
(Equations 3 and 6) with numerical integration. As the
normal distribution has infinite support, the inte-
grands on the right-hand sides of these equations
should be integrated to an upper limit at plus infinity,
a numerically intractable bound. We used Gauss-
Kronrod quadrature (as implemented in the quadgk
function in Matlab) in order to evaluate these
integrals.

Algorithm implementation

The ML-LS algorithm was implemented by mini-
mizing the negative of the log-likelihood function with
an unconstrained minimization algorithm (fminunc, in
Matlab’s Optimization Toolbox). The optimization
algorithm also yields a numerical approximation to the
Hessian matrix. Standard errors based on ML-LS
estimation were derived as the square root of the
diagonal elements of the inverse of this Hessian matrix.

Our algorithm for MLE differs from the previously
published algorithm for the related m-AFC task
(DeCarlo, 2012), in which each response variable was
modeled with an independent Bernoulli distribution
(DeCarlo, 2012) whereas we model the responses to
each stimulus event as arising from a trinomial
distribution (for the 2-ADC model) or, in general, a

multinomial distribution (for the m-ADC model);
parameter estimates are based on maximizing the
trinomial/multinomial likelihood function.

The MCMC algorithm (Metropolis sampling) was
custom implemented in Matlab for estimating sensi-
tivity and criteria from simulated response counts Or

s
(denoting the number of responses to location r for a
stimulus at location s). In the following, Ns denotes the
total number of trials for each stimulus event s, and the
symbol di is used as a general notation either for
sensitivity di when estimation was performed at a single
value of stimulus strength or for the collection of
psychophysical parameters (dmax, n, n50)i when estima-
tion was performed with the entire psychometric
function.

The MCMC algorithm proceeds with the following
steps: (a) Generate an initial guess for the parameters
(dr

i , c
r
i ) (the superscript r denotes a reference set).

Designate this as the reference parameter set. Deter-
mine response probabilities from Equation system 3
based on this set. We denote these probabilities by /r

s
ðnkj dr

i ; c
r
i Þ: (b) Compute the likelihood value Lr,

assuming that responses Or
s follow a multinomial

distribution with parameters Ns, /
r
s. (c) Generate a new

guess for the parameters (dn
i , c

n
i ) based on a transition

probability distribution for the parameters. (d) Deter-
mine response probabilities and the associated likeli-
hood value Ln based on the new guess. (e) Compute a
likelihood ratio based on the older and newer guesses:
LR ¼ Ln / Lr. (f) Accept the new guess for the
parameters with a probability a, which depends on the
magnitude of the likelihood ratio, a¼min(LR,1). Once
accepted, the new set of parameters becomes the
reference set, and the likelihood value based on the last
set of accepted parameters is used as the reference value
(Lr). (g) Repeat steps (c) through (f) until convergence.

We used Metropolis sampling of parameter space
based on a symmetric, multivariate transition proba-
bility distribution (Gaussian with standard deviation r
¼ 0.02 in each dimension). The MCMC simulation
proceeded until the algorithm converged on a specific
set of parameters di, ci, i � {1, 2} in four-dimensional
space. The algorithm was determined to have con-
verged when the value of L and the chi-square error
function changed by less than 2% over at least 100
consecutive iterations. The burn-in period was gener-
ally achieved within about 500 iterations (e.g., Figure
S3C and D). Posterior distributions were computed
based on parameter values between iterations 1,000 and
2,000. Standard errors for the parameters and 95%
credible intervals reported (Table S2C, Supplemental
Data) were based on the standard deviation and the
[2.5–97.5] percentile of the posterior distributions.

In the numerical estimation, the parameters {di, ci}
were permitted to take both positive and negative
values (unconstrained optimization); no constraint
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was placed on their sign or magnitude. However,
negative values of sensitivity parameters (di) lack
physical meaning. We repeated the estimation by
constraining sensitivity parameters to take only
positive values (with the constrained optimization
function fmincon in Matlab or with a custom-
implemented MCMC Metropolis-Hastings algo-
rithm); this analysis yielded sensitivity estimates that
matched those obtained with the unconstrained
optimization approaches.

Although a detailed analysis of the accuracy with
which parameters can be recovered is pending, param-
eters were reliably estimated with both simulated and
real behavioral data; parameter values and standard
errors were comparable to those estimated with the
indecision model (Figures 6B and D). Matlab code for
m-ADC model parameter estimation (MLE and
MCMC algorithms) can be downloaded at the following
location: http://purl.stanford.edu/mc140xy0456.

Optimal decision surfaces in the m-ADC model
are hyperplanes in m-dimensional decision
space

For maximizing success or, more generally, when
the benefit or cost of making an erroneous response is
the same for all stimulus–response contingencies,
optimal decision surfaces for additive signals and
noise are isosurfaces of the posterior odds ratio
(surfaces of constant posterior odds ratio). We
demonstrate this result in Appendix D.1
(Supplemental Data). Here, we derive the equations
for isosurfaces of the (log) posterior odds ratio and
show that these are identical to the decision bound-
aries in the m-ADC model.

For the m-ADC model, the decision variable (signal
and noise) distributions at each location (Equation 4)
can be expressed as components of a multivariate (m-
dimensional) Gaussian random variable W ¼
[W1,W2,. . .Wm] with a diagonal (identity) covariance
matrix. The equation of such a multivariate Gaussian
variable W with mean d(n)¼ [d(n1), d(n2), . . . d(nm)] and
covariance matrix C ¼ I (Cii ¼ 1, Cij ¼ 0, i, j � {1, . . .,
m}, i 6¼ j), can be written as

WðnÞ;Nmðl ¼ dðnÞ;C ¼ IÞ ¼ Ae

�
Xm
k¼1

1
2ðWk�dðnkÞÞ2

where N m is the m-dimensional Gaussian density
function, and A is a normalization constant in order for
N m to be a probability density (A ¼ 1/ð

ffiffiffiffiffiffi
2p
p
Þm). Here,

for simplicity of notation, we drop the subscript from di
and posit that the psychophysical function is the same
at all locations, although the results hold even without
this assumption.

During catch trials, when no stimulus is presented,
(jjd(n)jj1 ¼ 0), the decision variable (noise) distribution
is given by

WðnÞ;Ae

�
Xm
k¼1

1
2ðWkÞ2

:

During stimulus trials, when a stimulus is presented
at location j with strength nj, the decision variable
(signal) distribution is given by

WðnÞ;Ae

�1
2ðWj�dðnjÞÞ2�

Xm
k¼1;k 6¼j

1
2W

2
k

:

Thus, the log-likelihood ratio of a stimulus at
location j (with strength nj) versus no stimulus
anywhere (catch) is given by

logLj0 ¼ log
Ae

�1
2ðWj�dðnjÞÞ2�

Xm
k¼1;k 6¼j

1
2W

2
k

Ae

�
Xm
k¼1

1
2W

2
k

¼ �
ðWj � dðnjÞÞ2

2
þ

W2
j

2

¼ WjdðnjÞ � dðnjÞ2=2:

The posterior odds ratio is obtained by multiplying
the prior odds ratio with the likelihood ratio. The prior
odds of a stimulus presentation at location j with
strength nj versus no stimulus is denoted by pnj/p0¼ p(nj
¼ 1, nk¼ 0 �k 6¼ j)/p(jjnjj1¼ 0)). Thus, the log-posterior
odds is obtained by adding log(pnj/p0) to the log-
likelihood ratio.

logKj0ðWÞ ¼ logLj0ðWÞ þ log
pnj

p0

¼ Wjdðn jÞ � d2
ðn jÞ=2þ log

pnj

p0
:

Optimal decision surfaces for reporting a stimulus of
strength nj at location j versus no stimulus are surfaces
of constant Kj0 (see Appendix D.1, Supplemental
Data):

logKj0 ¼ logbj0

log
pnj

p0
þWjdðnjÞ �

dðnjÞ2

2
¼ logbj 0

Wj ¼
1

dðnjÞ
ðlogbj0 � log

pnj

p0
þ
dðnjÞ2

2
Þ

Wj ¼ cjðbj0; pnj=p0; dðnjÞÞ ð7Þ
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Thus, these optimal surfaces are hyperplanes of
constant Wj. The specification of a cutoff criterion at
Wj ¼ cj, as in the m-ADC model, corresponds to the
observer employing a decision boundary from among
this family of optimal decision surfaces. The precise
choice of cj would depend on the cost/utility of
choosing each alternative (bj0, see Appendix D.1) and
the prior odds ratio as well as the perceptual
sensitivity to that stimulus (d(nj)). Specifically, when
the prior odds, relative costs, and stimulus strength
at each location remain constant across trials, the
optimal value of cj also remains constant across
trials.

Next, we calculate the log-likelihood ratio for a
stimulus of strength ni at location i versus a stimulus of
strength nj at location j. This is given by

logLij ¼ log
Ae

�1
2ðWi�dðniÞÞ2�

Xm
k¼1;k 6¼i

1
2W

2
k

Ae

�1
2ðWj�dðnjÞÞ2�

Xm
k¼1;k 6¼j

1
2W

2
k

¼ �ðWi � dðniÞÞ2

2
þW2

i

2
þ
ðWj � dðnjÞÞ2

2

�
W2

j

2

¼ 1

2

�
2WidðniÞ � dðniÞ2 � 2WjdðnjÞ þ dðnjÞ2

�
:

As before, the log-posterior odds ratio is given by

logKij ¼ WidðniÞ �
dðniÞ2

2
�WjdðnjÞ þ

dðnjÞ2

2
þ log

pni

pnj

:

Optimal decision surfaces for reporting a stimulus at
location i versus a stimulus at location j are surfaces of
constant Kij (see Appendix D.1, Supplemental Data):

logKij ¼ logbij

WidðniÞ �
dðniÞ2

2
�WjdðnjÞ þ

dðnjÞ2

2
þ log

pni

pnj

¼ logbij

WidðniÞ �WjdðnjÞ ¼ logbij � log
pni

pnj

þ
dðniÞ2 � dðnjÞ2

2

Widni �Wjdnj ¼ Bijðbij; pni=pnj ; dðniÞ; dðnjÞÞ ð8Þ

Thus, these optimal decision surfaces are hyper-
planes of constant Wi d(ni) – Wj d(nj)¼ Bij.

To determine the value of this constant, we
demonstrate the following result: Optimal decision
surfaces defined by Equations 7 and 8 intersect at a
point (proved in Appendix D.2, Supplemental Data).
Even without a formal demonstration, it is apparent
that if these don’t intersect at point, then the decision
space could contain domains in which the optimal
decision is not uniquely specified.

Given this, each of the decision surfaces defined by
Equation 8 must pass through the point of intersection
of the optimal decision surfaces defined in Equation 7,
given by (Wi, Wj) ¼ (ci, cj). Hence, the constant Bij ¼ ci
d(ni) – cj d(nj) and the optimal decision hyperplane are
given by Wi d(ni) – Wj d(nj) ¼ ci d(ni) – cj d(nj).

Specifically, when d(ni)¼d(nj)¼d, i.e., the perceptual
sensitivities at the two locations are equal (and
constant), these decision surfaces are planes of constant
Wi – Wj¼ ci – cj. Thus, in this case, the decision surfaces
in the m-ADC model (constant Wi – Wj) belong to the
family of optimal decision surfaces for detecting a
stimulus at location i versus at location j.

We summarize below the equations for each optimal
decision boundary under the conditions described
above:

Wj ¼ cj Wi �Wj ¼ ci � cj ð9Þ
These are hyperplanes in m-dimensional decision

space as specified by the m-ADC decision rule
(Equation 5).

Keywords: signal detection theory, nonforced choice,
unforced choice, multidimensional models, attention,
perceptual decision-making, optimal decision theory
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Supplemental Data: Appendix
A Demonstration of model identifiability

A.1 Identifiability of of 2-ADC model

In this section, we demonstrate that there is a one-to-one mapping from the set of parameters {di, ci}, i ∈ {1, 2} to the set of
response probabilities of the 2-ADC model. As these proofs do not assume a specific form of the decision variable distribution (e.g.,
Gaussian), we use a slightly different notation for these distributions. Thus, the probability density and the cumulative distribution of
the decision variable distribution at location i under noise (catch trials) are given by fi and Fi, respectively (Methods). Thus, equation
system 3 can be rewritten as:

p(Y = 1|X) =

∫ ∞
c1−d1X1

F2(e+ d1X1 − d2X2 − (c1 − c2)) f1(e) de

p(Y = 2|X) =

∫ ∞
c2−d2X2

F1(e+ d2X2 − d1X1 − (c2 − c1)) f2(e) de (10)

p(Y = 0|X) = F1(c1 − d1X1) F2(c2 − d2X2)

The proof proceeds in two steps. In the first step, we demonstrate the one-to-one mapping of the choice criteria to the response
probabilities. In the second step, we build upon the previous result to demonstrate the one-to-one mapping of the perceptual sensitivities
to the response probabilities.

One-to-one mapping of the 2-ADC criteria to the response probabilities during catch trials

First, we demonstrate that there is a one-to-one mapping from the set of criteria, (c1, c2), to set of response probabilities during
catch trials pi0, i ∈ {0, 1, 2} (as mentioned before, we use pi0 as a notational shorthand for p(Y = i|Xi = 0, Xj = 0)).

We consider the system of response probabilities when no stimulus was presented (X1 = X2 = 0), i.e. false-alarm rates at each
location during catch trials:

p1
0 =

∫ ∞
c1

F2(e− c1 + c2) f1(e) de

p2
0 =

∫ ∞
c2

F1(e− c2 + c1) f2(e) de (11)

We demonstrate that if set of criteria (c1, c2) produces a given set of response probabilities pi0, then it is the only set that can
produce these probabilties. The analytical proof rests on the following lemmas:

Lemma 1 pi0(ci, cj) is a monotonically decreasing function of ci and a monotonically increasing function of cj , i, j ∈
{1, 2}, i 6= j.

Lemma 2 p0
0 is a monotonically increasing function of both c1 and c2. Specifically, p0

0 = F1(c1) F2(c2).

Simply put, these lemmas assert that response probabilities vary monotonically as a function of choice criteria. The proof of these
lemmas is provided in Appendices A.1-A.2 (Supplemental Data). The proof assumes no specific form for the functions f1 and f2; only
that they are continuous and supported over the entire domain of integration. Upon rearrangement of the identity in Lemma 2:

Fi(ci) = p0
0/Fj(cj) i, j ∈ {1, 2}, i 6= j (12)

The sequence of arguments for the proof follows:
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(i) Let (c1, c2) be a set of criteria that produces Pi0 of pi0. Assume that there exists another set (c′1, c
′
2) that also produces these same

probabilities, such that at least one c′i is distinct from ci.

(ii) Without loss of generality, let c1 > c′1.

(iii) From Lemma 1,
c1 > c′1 ⇒ p1

0(c1, c2) = P1
0 < p1

0(c′1, c2). Similarly,
c1 > c′1 ⇒ p2

0(c1, c2) = P2
0 > p2

0(c′1, c2).

(iv) Hence, it follows that c′2 > c2 for constant Pi0. In other words, if one choice criterion increases, the other must also increase to
keep p1

0 constant.

(v) Being cumulative distribution functions, Fi-s are monotonic functions of their arguments. Thus, F (c1) > F (c′1)⇔ c1 > c′1.

(vi) From Lemma 2, (equation 12), and point (v) above: c1 > c′1 ⇒ c′2 < c2 for constant P0
0 . In other words, if one choice criterion

increases, the other must decrease to keep p0
0 constant.

The proof follows by contradiction.

One-to-one mapping of the 2-ADC sensitivities to the response probabilities during stimulus trials

Next, we demonstrate, based on the previous result, that there is a one-to-one mapping from the set of sensitivities, (d1, d2) to the
set of response probabilities during stimulus trials pij , i ∈ {0, 1, 2}, j ∈ {1, 2}.

For a stimulus presented at location i (Xi = 1), response probabilities at location i are given by (refer equation system 10):

p1
1 =

∫ ∞
c1−d1

F2(e+ d1 − c1 + c2) f1(e) de (13)

p2
2 =

∫ ∞
c2−d2

F1(e+ d2 − c2 + c1) f2(e) de (14)

The proof rests on the following lemma, which is proved in Appendix B.3 (Supplemental Data):

Lemma 3 pij(di, dj) is a strictly monotonic function of its arguments (di, dj), i, j ∈ {1, 2}, i 6= j.

The sequence of arguments for the proof follows:

(i) Based on the previous section, we have already established a one-to-one mapping from the set of criteria (c1, c2) to the response
probabilities during catch trials. Thus, the criteria are fixed based on the proportion of false-alarms and correct rejections.

(ii) Given a particular (c1, c2), each of the probabilities, p1
1 and p2

2, in the above system of equations is only a function of its respective
di, i ∈ {1, 2}.

(iii) By Lemma 3, pii is a strictly monotonic function of its respective di.

(iv) In other words, there is a one-to-one mapping of the di-s to the respective pii-s.

We have shown that given a set of choice criteria, there is a one-to-one mapping of the sensitivities to the response probabilities.
In the previous section, we showed a similar one-to-one mapping of the choice criteria to the response probabilities. Thus, there is a
one-to-one mapping from the set of parameters {di, ci}, i ∈ {1, 2} to a given set of response probabilities (given by model equations 3).
This completes the proof.
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A.2 Identifiability of of m-ADC model

In the previous section, we showed that the 2-ADC model is identifiable. In this section we extend this result to demonstrate that
the m-ADC model is also identifiable. In other words, there is a one-to-one mapping of the model parameters (sensitivities, criteria) to
the response probabilities in the m-ADC model.

As before, we rewrite equations 6 with the notation for the more general notation for the probability density and cumulative
distribution functions (fi and Fi, see Methods).

p(Y = i| ξ) =

∫ ∞
ci−d(ξi)

∏
k,k 6=i

Fk(e+ d(ξi)− d(ξk)− ci + ck) fi(e) dep(Y = 0| ξ) =
∏
k

Fj(ck − dk(ξk)) (15)

The demonstration proceeds in two steps. First we demonstrate the following with mathematical induction: if the m-ADC model
(for a task with m response alternatives) has a one-to-one mapping of the criteria to the response probabilties, then so does the (m+1)-
ADC model (for a task with (m + 1) alternatives). Next, we utilize monotonicity to show that there is a one-to-one mapping of the
perceptual sensitivities to the response probabilities for the m-ADC model.

One-to-one mapping of the m-ADC criteria to the response probabilities during catch trials

We consider the probabilities of response during catch trials. This is given by setting d(ξk) = 0∀k in equation system 15:

pi0 =

∫ ∞
ci

∏
k,k 6=i

Fk(e− ci + ck) fi(e) de

i ∈ {0, . . . ,m} (16)

where pi0 = p(Y = i| ξ; ‖dξ‖1 = 0).

Statement Given a set of response probabilities Pi0 for an m-alternative model, and the ordered set of criteria C = {ci :

i ∈ {0, . . . ,m}} that produce these probabilities (according to the system of equations 16 then there is no alternate set of
criteria C∗ that produces the same probabilities.

Basis There is a one-to-one mapping from the set of criteria C = {c1, c2} to the response probabilities in a 2-alternative
model (m=2).

Inductive step Let there be a one-to-one mapping from the set of criteria to the response probabilities in an m-alternative

model, i.e., given a set of response probabilities pi0 = Qi, there is one, and only one, set of m-ADC criteria Cm = {ci : i ∈
{0, . . . ,m}} that produces these probabilities (from the system of equations 16). Then, given a set of response probabilities
pi0 = Pi0 for an m+1-alternative model, and a set of criteria Cm+1 = {cj : j ∈ {0, . . . ,m + 1}} that produces these
probabilities there is no other set C∗m+1 that also produces the same probabilities, i.e., there is a one-to-one mapping from
the set of criteria to the response probabilities in an m+1-alternative model.

Proof of basis In a previous section we proved the one-to-one mapping of the criteria to the 2-ADC response probabilities during
catch trials (Appendix A.1, Supplemental Data). This constitutes the proof of the basis for m = 2.

Proof of inductive step The inductive step is proved, as before, in two stages:
The proof rests on the following lemmas, which are proved in Appendices A.4-A.6 (Supplemental Data).
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Lemma 4 Given a set of response probabilities pr0 = Pr0 , r ∈ {0, . . . ,m + 1}, and any set of criteria C = {cj : j ∈
{0, . . . ,m + 1}} comprising an ordered set that produces these probabilities (according to equations 16). There is a one-
to-one correspondence between any choice criterion ci in C and its complement set C ′i = {cj : j ∈ {0, . . . ,m+ 1}, j 6= i}
that excludes ci.

Lemma 5 Given a set of response probabilities Pi0, i ∈ {1, . . . ,m+ 1} and the set of all sets of criteria {Ck = {cjk : j ∈
{0, . . . ,m + 1}}} comprising ordered sets that produce these probabilties (according to equations 16). For any two sets
C1 and C2, every pair of corresponding elements (cj

1, cj
2) obeys the same order relation, i.e., if any ci1 ≷ ci

2 then every
cj

1 ≷ cj
2, i, j ∈ {0, . . . ,m+ 1}, i 6= j.

Lemma 6 Given a set of response probabilities P0
0 and the set of all sets of criteria {Ck = {cjk : j ∈ {0, . . . ,m + 1}}}

comprising ordered sets that produce these probabilties (according to equations 16). For any two sets C1 and C2, at
least one pair of corresponding elements (cj

1, cj
2) differs in its order relation, i.e., if any ci1 ≷ ci

2 then at least one
cj

1 ≶ cj
2, i, j ∈ {0, . . . ,m+ 1}, i 6= j.

Simply put, Lemma 4 states that given set of false-alarm and correct rejection rates, fixing one choice criterion determines all of
the other choice criteria. The proof of Lemma 4 utilizes the induction hypothesis (see Appendix B.4, Supplemental Data). Lemma 5
states that if the choice criterion to one location were to increase (decrease), the choice criterion at every location has to also increase
(decrease) to maintain the false-alarm rate unchanged at each location. Lemma 6 states that if the choice criterion to one location
were to increase (decrease), the choice criterion at least at one location has to decrease (increase) to maintain the correct rejection rate
unchanged.

The sequence of arguments for the proof proceeds as follows:

(i) LetC = {cj : j ∈ {0, . . . ,m+1}} be a set of criteria that produce a specific value of pi0 = Pi0. LetC ′ = {c′j : j ∈ {0, . . . ,m+1}}
be a different set that produces the same Pi0.

(ii) By Lemma 4, cj 6= c′j ∀ j. Without loss of generality, let ci > c′i.

(iii) By Lemma 5, if ci > c′i, then cj > c′j ∀ j, j 6= i.

(iv) By Lemma 6, if ci > c′i, then at least one cj < c′j for some j 6= i.

The proof follows by contradiction. Thus, the set of criteria C = {cj : j ∈ {0, . . . ,m + 1}}, which produces mathcalP i0
(according to equations 16) is unique. In other words, there is a one-to-one mapping from the set of criteria to the response probabilities
during catch trials (false-alarm rates and correct rejections).

One-to-one mapping of the m-ADC sensitivities to the response probabilities during stimulus trials

The proof rests on the following lemma (proved in Appendix B.7, Supplemental Data):

Lemma 7 The response probability pij(d(ξk)) is a strictly monotonic function of d(ξk).

The sequence of arguments proceeds as follows:

(i) By the task specification, no more than one stimulus is presented on a given trial. Thus, for a fixed set of criteria C, the response
probabilities pii of equation system 15 are simply a function of their respective perceptual sensitivities di.

(ii) From Lemma 7, the response probability pii(d(ξi)) is a strictly monotonic function of its respective di, i ∈ {1, . . . ,M}.

(iii) Strict monotonicity implies a one-to-one mapping of the d(ξi)-s to the respective pii-s.

This completes the proof. Note that the same arguments could be made with other sets of probabilities, such as the false-alarm
rates, pji , for reporting a stimulus at location j when a stimulus was presented at location i, which are also monotonic functions of d(ξi)

(Appendix B.7, Supplemental Data).
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B Proof of lemmas on model identifiability

In this section, we demonstrate analytically various lemmas (employed in Appendix A) on model identifiablity.

B.1 Proof of Lemma 1: Monotonic variation of the probability of a NoGo response with choice
criteria in 2-ADC catch trials

Assertion: p(Y = 0|‖X‖1 = 0) (or p0
0) is a monotonically increasing function of both c1 and c2. Specifically, p0

0 = F1(c1) F2(c2).

Proof: We compute the probability of a NoGo response during catch trials. This happens when Ψ falls below the criterion at both
locations (Y = 0, iffΨ1 ≤ c1 ∩ Ψ2 ≤ c2). Thus,

p(Y = 0|X) = p(Ψ1 ≤ c1 ∩ Ψ2 ≤ c2) (17)

Upon substitution of the structural model, and noting that the εi are independent, this gives:

p(Y = 0|X) = p(ε1 ≤ c1 ∩ ε2 ≤ c2)

= p(ε1 ≤ c1)p(ε2 ≤ c2)

= F1(c1) F2(c2) (18)

Thus, the probability of a correct rejection in the 2-ADC model factors into the product of the 1-ADC correct-rejection probabilities.

p0
0 = F1(c1) F2(c2) (19)

As the Fi-s are positive, and monotonically increasing functions of their arguments, p0
0 is a monotonically increasing function of

c1 and c2.

B.2 Proof of Lemma 2: Monotonic variation of the probabilities of Go responses with choice
criteria in 2-ADC catch trials

Assertion: p(Y = i|‖X‖1 = 0) (or pi0) is a monotonically decreasing function of ci and a monotonically increasing function of cj .

Proof: We reproduce equation system 11 here:

p1
0 =

∫ ∞
c1

F2(e+ c2 − c1) f1(e) de (20)

p2
0 =

∫ ∞
c2

F1(e+ c1 − c2) f2(e) de (21)

With increasing c1, p1
0 has to decrease because:

(i) The integrand (F2(e+c2−c1), specifically) decreases because F2 is a monotonic function of its arguments (e+c2−c1 decreases)

(ii) The domain of integration (c1 →∞) decreases as c1 increases (the integrand is never negative)

With increasing c2, p1
0 has to increase because the integrand increases (F2(e + c2 − c1), specifically), and the domain of integration is

unaffected by c2. The (converse) effects of c1 and c2 on p2
0 can be similarly argued.
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B.3 Proof of Lemma 3: Monotonic variation of response probabilities with perceptual sensitivi-
ties in 2-ADC stimulus trials

Assertion: p(Y = i|Xi = 1) (or pii) and p(Y = i|Xj = 1) (or pij) are both monotonic functions of di and dj(i, j ∈ {1, 2}).

Proof: We reproduce part of equation system 10 here for reference.

p(Y = i|X) =

∫ ∞
ci−diXi

Fj(e+ diXi − djXj − ci + cj) fi(e) de (22)

i, j ∈ {1, 2}, i 6= j

where we have dropped the subscript from ei (a variable of integration).
With increasing di, p(Y = i|Xi = 1) or pii has to increase because:

(i) The integrand (Fj(e+ di − ci + cj), specifically) increases because Fj is a monotonic function of its arguments (di increases)

(ii) The domain of integration (ci − di →∞) increases as di decreases (the integrand is never negative)

With increasing dj , p(Y = i|Xj = 1) or pij has to decrease because:

(i) The integrand (Fj(e− dj − ci + cj), specifically) increases because Fj is a monotonic function of its arguments (-dj decreases)

(ii) The domain of integration is unaffected by dj .

This completes the proof.

B.4 Proof of Lemma 4: One-to-one correspondence of m-ADC choice criteria

Assertion: Given a set of response probabilities pr0 = Pr0 , r ∈ {0, . . . ,m + 1}, and a set of criteria C = {cj : j ∈ {0, . . . ,m + 1}}
that produces these probabilities (according to equation system 16). There is a one-to-one correspondence between any choice criterion

ci and its complement set C ′i = {cj : j ∈ {0, . . . ,m+ 1}, j 6= i}.

Proof: The proof proceeds in two steps, first demonstrating the mapping ζ : C ′i 7→ ci, and then its inverse ζ−1 : ci 7→ C ′i.
First, consider the probability p0

0 = P0
0 . A given choice criterion ci, i ∈ {0, . . . ,m+ 1} can be expressed in terms of the remaining

criteria in the following way.

P0
0 =

m+1∏
j=1

Fj(cj) (23)

ci = F−1
i (

P0
0∏m+1

j=1,j 6=i Fj(cj)
) (24)

where Fi is invertible, being a cumulative distribution function. Given a particular p0
0 = P0

0 , and a set of m criteria {cj : j ∈
{0, . . . ,m+ 1}, j 6= i} the remaining criterion ci is uniquely determined, thus demonstrating the mapping φ : C ′i 7→ ci.

Next, consider the set of probabilities Pi0. From system 16, these can be written as:

Pi0 =

∫ ∞
ci

m+1∏
k=1,k 6=i

Fk(e− ci + ck) fi(e) de (25)
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With the variable substitution e′ = e− ci, and following some algebra, this set of equations can be rewritten as:

Pi0 =

∫ ∞
0

m+1∏
k=1,k 6=i

Fk(e+ ck) fi(e+ ci) de (26)

Let C be a set of criteria {cj : j ∈ {0, . . . ,m + 1}} that produces the probabilities on the left hand side of this equation. Let us
assume that one of the criteria in this set, say cm+1 (without loss of generality) has a known value.

Define the following functions (for i ∈ {0, . . . ,m}).

Fµ(e; cm+1) = [Fm+1(e+ cm+1)]
1
m (27)

Gi(e+ ci; cm+1) = Fi(e+ ci) Fµ(e; cm+1) (28)

We note that both Fµ and Gi are parameterized by cm+1. Fµ, the m-th root of a cumulative distribution function, and G, the
product of Fµ and Fi are both monotonic, continuous functions, and it is easy to see that lim

e→−∞
Gi = 0; lim

e→+∞
Gi = 1. Thus, Gi is

itself a cumulative distribution function with the following probability density:

gi(e+ ci; cm+1) =
∂G

∂e
(29)

= Fi(e+ ci)
∂Fµ(e; cm+1)

∂e
+ Fµ(e; cm+1) fi(e+ ci) (30)

Now, let us consider the following system of equations:

Qi =

∫ ∞
0

m∏
k=1,k 6=i

Gk(e+ ck; cm+1) gi(e+ ci; cm+1) de (31)

With some algebra, we can show that Qi = Pi0 + (Pm+1
0 /m).

By the induction hypothesis for m-equations, given a set of qi-s, and the parameter cm+1, all of the ck-s are uniquely determined.
Because cm+1 was an arbitrarily chosen criterion, the result can be generalized as follows: given a set of Qi-s, and any choice criterion
ci, all of the other choice criteria in C ′i = {cj : j ∈ {0, . . . ,m + 1}, j 6= i}-s are uniquely determined, thus demonstrating the inverse
mapping φ−1 : ci 7→ C ′i.

Thus, for a given set of response probabilities Pi0 and a set of criteria C that produces these probabilities, we have shown a
one-to-one correspondence among any one choice criterion, and the remaining criteria in the set ci ↔ C ′i.

B.5 Proof of Lemma 5: Direct variation among all criteria in the m-ADC model

Assertion: Given a set of response probabilities Pi0, i ∈ {1, . . . ,m+1} and the set of all sets of criteria {Ck = {cjk : j ∈ {0, . . . ,m+

1}}} comprising ordered sets that produce these probabilties (according to equations 16). For any two sets of criteria C1 and C2, every

pair of corresponding elements (cj
1, cj

2) obeys the same order relation, i.e., if any ci1 ≷ ci
2 then every cj1 ≷ cj

2, i, j ∈ {0, . . . ,m+1}.

Proof: Given set of response probabilities Pi0. Let C1 = {cj1 : j ∈ {0, . . . ,m+ 1}} be a set of criteria the produce these probabilities,
and let C2 = {cj2 : j ∈ {0, . . . ,m + 1}} be another, distinct (not identical) set that also produces the same probabilities. Also let all
choice criteria from set C1, except that corresponding to choice i (ci), be greater (or lesser) in value than the corresponding criteria in set
C2. We demonstrate that in this case, the criterion ci in set C1 must also be greater (or lesser) in value than the corresponding criterion
in set C2.
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The Pi0 are given by (refer equation 26):

Pi0 =

∫ ∞
0

m+1∏
j=1,j 6=i

Fj(e+ cj
1) fi(e+ ci

1) de (32)

=

∫ ∞
0

m+1∏
j=1,j 6=i

Fj(e+ cj
2) fi(e+ ci

2) de

Note that if cj1 ≷ cj
2,

m+1∏
j=1,j 6=i

Fj(e+ cj
1) ≷

m+1∏
j=1,j 6=i

Fj(e+ cj
2) ∀e (33)

as the Fj-s are monotonically increasing functions of their arguments. Hence, for the right hand sides of equation 33 to be equal
to each other (and each equal to Pi0) ci1 ≷ ci

2. The latter result is confirmed by inspecting the integrands of equation 33, and is also
evident from the following lemma.

Lemma 8 The response probability pi0 is a strictly (monotonically) increasing function of cj and a strictly (monotonic)
decreasing function of ci.

The lemma is proved in a subsequent section. Thus, if every cj1 ≷ cj
2, j ∈ {0, . . .m+1}, j 6= i then, ci1 ≷ ci

2. However, we have
just shown that there is a one-to-one correspondence between each ci and its complement set C ′i = {cj : j ∈ {0, . . . ,m + 1}, j 6= i}.
Thus, the converse statement must also hold: that is, if ci1 ≷ ci

2, then every cj1 ≷ cj
2, j ∈ {0, . . .m}, j ∈ {0, . . . ,m+ 1}, j 6= i. This

completes the proof.

B.6 Proof of Lemma 6: Inverse variation among at least a pair of criteria in the m-ADC model

Assertion: Given a set of response probabilities P0
0 and the set of all sets of criteria {Ck = {cjk : j ∈ {0, . . . ,m + 1}}} comprising

ordered sets that produce these probabilties (according to equations 16). For any two sets C1 and C2, at least one pair of corresponding

elements (cj
1, cj

2) differs in its order relation, i.e., if any ci1 ≷ ci
2 then at least one cj1 ≶ cj

2, i, j ∈ {0, . . . ,m+ 1}, i 6= j.

Proof: Given set of response probabilities Pi0. Let C1 = {cj1 : j ∈ {0, . . . ,m + 1}} and C2 = {cj2 : j ∈ {0, . . . ,m + 1}} be
distinct sets of criteria that produce these probabilities (given by equation system 16). Also let any one choice criterion from set C1,
corresponding to choice i (ci), be greater in value than the corresponding criterion in set C2 i.e. ci1 > ci

2.
We prove the result by contradiction. Assume that none of the other criteria in set C1 is lesser than the corresponding criteria in set

C2. In other words, every cj1 ≥ cj2, j ∈ {0, . . .m+ 1}.
Given the probability of a NoGo response during catch trials, this can be written as:

P0
0 =

m+1∏
j=1

Fj(cj
1) =

m+1∏
j=1

Fj(cj
2) (34)

The functions Fj are monotonic functions of their arguments. If every cj1 ≥ cj
2 equality of the right hand side expressions holds

only if cj1 = cj
2, which violates the assumption that C1 and C2 are non-identical sets. Thus, if any one ci1 > ci

2, the assumption
that none of the other criteria in set C1 is lesser than the corresponding criteria in set C2 leads to a contradiction. Hence, if any
ci

1 > ci
2, i ∈ {0, . . . ,m+ 1} then at least one criterion in set C1 has to be lesser than the corresponding criterion in set C2.

It is easy to see that the converse is also true, i.e. if any ci1 < ci
2, i ∈ {0, . . . ,m+ 1} then at least one criterion in set C1 has to be

greater than the corresponding criterion in set C2. This completes the proof.
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B.7 Proof of Lemma 7: Monotonic variation of m-ADC response probabilities with perceptual
sensitivity

Assertion: The response probability pij is a strictly monotonic (increasing) function of d(ξi) and a strictly monotonic (decreasing)
function of d(ξj).

Proof: We reproduce the system of equations 15 for reference:

p(Y = i| ξ) =

∫ ∞
ci−d(ξi)

m∏
k=1,k 6=i

Fk(e+ d(ξi)− d(ξk)− ci + ck) fi(e) de (35)

Consider the probability of response to location i when the stimulus is presented at the same location (d(ξk) = 0 ∀ k 6= i).

pii =

∫ ∞
ci−d(ξi)

m∏
k=1,k 6=i

Fk(e+ d(ξi)− ci + ck) fi(e) de (36)

With increasing d(ξi), the response probability pii has to increase, as the integrand increases with d(ξi) (each Fk is a monotonically
increasing function of its argument), and the integration (positive integrand) occurs over a larger domain (ci − d(ξi) decreases).

Next, consider the probability of response to location i when the stimulus is presented at location j, j 6= i (d(ξk) = 0 ∀ k 6= j).

pij =

∫ ∞
ci

m∏
k=1,k 6=i,j

Fk(e− ci + ck)Fj(e− d(ξj)− ci + cj) fi(e) de (37)

Again, it is apparent that with increasing d(ξj) the response probability pij has to decrease, as the integrand (Fj(e − d(ξj) − ci + cj),
specifically) decreases with increasing d(ξj) (the domain of integration is unaffected by d(ξj)).

This completes the proof.

B.8 Proof of Lemma 8: Monotonic variation of m-ADC response probabilities with choice criteria

Assertion: The response probability pi0 is a strictly monotonic (decreasing) function of ci and a strictly monotonic (increasing) function
of cj .

Proof: Consider the probability of response to location i when the no stimulus is presented (Xk = 0∀k).

pi0 =

∫ ∞
ci

m∏
k=1,k 6=i

Fk(e− ci + ck) fi(e) de (38)

With increasing ci, the response probability pi0 has to decrease as the integrand decreases with ci (eachFk a monotonically decreases
with ci), and the integration (positive integrand) occurs over a smaller domain. Similarly, with increasing cj , pi0 has to increase as the
integrand (Fj(e− ci + cj), specifically) increases with cj .

This completes the proof.
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C Concavity of the log-likelihood function

In this section, we identify key challenges with demonstrating the concavity of the log-likelihood function. While there are many
ways to demonstrate concavity analytically, perhaps the most conceptually straightforward is the second derivative test.

We consider the multinomial log-likelihood function for the 2-ADC model.

L =

2∑
i=0

2∑
j=0

Oij log(pjp
i
j) + C (39)

where Oij represents the observed number of responses to location i for the stimulus event j, pj represents the prior probability
of stimulus event j and pij denotes the probability of response to location i for the stimulus event j (a conditional probability), and C
represents an additive constant associated with the multinomial coefficient

(
N
Oi

j

)
, where N is the total number of observations.

The prior probability of each stimulus event, pj , is generally constant across an experimental session. With this assumption, the pj
terms can be factored out of L, as they contribute only an additive term to L without affecting its shape. Thus, to prove convexity, let us
consider a simplified function that excludes all of the additive terms:

L′ =

2∑
i=0

2∑
j=0

Oij log(pij) (40)

In order to prove concavity of this function, we need to show that its Hessian is negative semidefinite (non-positive eigenvalues).
Note that L′ is a function of the four 2-ADC model parameters (d1, d2, c1, c2). Thus, its Hessian is given by:

H̃ =


∂2L′

∂d21

∂2L′

∂d1 ∂d2
∂2L′

∂d1 ∂c1
∂2L′

∂d1 ∂c2
∂2L′

∂d2 ∂d1
∂2L′

∂d22

∂2L′

∂d2 ∂c1
∂2L′

∂d2 ∂c2
∂2L′

∂c1 ∂d1
∂2L′

∂c1 ∂d2
∂2L′

∂c21

∂2L′

∂c1 ∂c2
∂2L′

∂c2 ∂d1
∂2L′

∂c2 ∂d2
∂2L′

∂c2 ∂c1
∂2L′

∂c22

 (41)

Each term of the Hessian may be represented as
∂2L′

∂θ1 ∂θ2
, where θ1 and θ2 represent a two of the four parameters (not necessarily

distinct). With some algebra, this generic term evaluates to:

∂2L′

∂θ1 ∂θ2
=

2∑
i=0

2∑
j=0

Oij
∂

∂θ1

(
1

pij

∂pij
∂θ2

)

=

2∑
i=0

2∑
j=0

Oij
1

pij

(
∂2pij
∂θ1 ∂θ2

− 1

pij

∂pij
∂θ1

∂pij
∂θ2

)
(42)

These represent 10 distinct terms in the Hessian, since it is a symmetric matrix. However, certain simplifications are possible. For
example, we can show that:

∂pij
∂dk

= −δjkXk

∂pij
∂ck

(43)

where δjk is the Kronecker delta function, i, j ∈ {0, 1, 2} and k ∈ {1, 2}. In other words, the partial derivative of the response
probabilities with respect to the sensitivities, are numerically equal to the partial derivatives with respect to the corresponding criteria
(demonstrated analytically, below). This result is not surprising, per se, given that each response probability, pij (given by equation 10)
is invariant on the surface ci − diXi = const and cj − djXj = const, i.e., increasing ci or decreasing di by the same value (or vice
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versa) causes piX to change by the same amount (for a graphical intuition, see Figure 5C).
Based on these relations, we can define the second partial derivatives of the response probabilities as:

∂2pij
∂dk ∂dl

= δklδjkXk

∂2pij
∂ck ∂cl

(44)

∂2pij
∂dk ∂cl

= −δjkXk

∂2pij
∂ck ∂cl

From equations 42, 43 and 44, the Hessian is populated by second partial derivatives, of the form
∂2pij
∂c1 ∂c2

, as well as products of

the first partial derivatives, of the form
∂pij
∂c1

∂pij
∂c2

. The product with the Kronecker delta functions and the Xj-s renders some of these
terms zero.

We have previously shown (Appendix B.1-B.2) that the pij in the 2-ADC model are monotonic functions of the criteria. Thus, the

first partial derivatives
∂pij
∂ck

are either always positive or negative for a given i, j, k. No such generalization can be made on the second

partial derivatives (e.g., Figure S1A); these appear to vary with the actual value of c1 and c2.
We analytically evaluate the first order partial derivatives of pij with respect to the four parameters (d1, d2, c1, c2), to verify if further

simplification of the Hessian (equation 42) may be achieved.
We reproduce part of equation system 10 for the 2-ADC task here for reference.

p(Y = i|X) =

∫ ∞
ci−diXi

Fj(e+ diXi − djXj − ci + cj) fi(e) de (45)

i, j ∈ {1, 2}, i 6= j

We rewrite the above equations with the following transformation e′ = e − ci + diXi; with this transformation, the criterion and
sensitivity are eliminated from the limits of integration. The system may then be rewritten as:

p(Y = i|X) =

∫ ∞
0

Fj(e
′ + cj − djXj) fi(e

′ + ci − diXi) de
′ (46)

i, j ∈ {1, 2}, i 6= j

Computing the partial derivative of system 46 with respect to di (and replacing the dummy variable of integration e′ with e):

∂p(Y = i|X)

∂di
=

∂

∂di

(∫ ∞
0

Fj(e+ cj − djXj) fi(e+ ci − diXi) de

)
=

∫ ∞
0

∂

∂di
(Fj(e+ cj − djXj) fi(e+ ci − diXi)) de

=

∫ ∞
0

Fj(e+ cj − djXj)

(
∂fi(e+ ci − diXi)

∂di

)
de

(47)
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Integrating by parts, and noting that ∂
∂di

(dkXk) = δikXk, we have:

∂p(Y = i|X)

∂di
=

[
Fj(e+ cj − djXj)

∂Fi(e+ ci − diXi)

∂di

]∞
0

−
∫ ∞

0

fj(e+ cj − djXj)
∂Fi(e+ ci − diXi)

∂di
de

= −Fj(cj − djXj) fi(ci − diXi)(−Xi)

−
∫ ∞

0

fj(e+ cj − djXj) fi(e+ ci − diXi)(−Xi) de

= Xi {Fj(cj − djXj) fi(ci − diXi)

+

∫ ∞
0

fj(e+ cj − djXj) fi(e+ ci − diXi) de}

(48)

Computing the partial derivative of system 46 with respect to dj :

∂p(Y = i|X)

∂dj
=

∫ ∞
0

(
∂Fj(e+ cj − djXj)

∂dj

)
fi(e+ ci − diXi) de

=

∫ ∞
0

fj(e+ cj − djXj)(−Xj)fi(e+ ci − diXi) de

= −Xj

∫ ∞
0

fj(e+ cj − djXj)fi(e+ ci − diXi) de

(49)

Similarly, computing the partial derivative of system 46 with respect to ci and cj (noting that ∂
∂ci

(ck) = δik):

∂p(Y = i|X)

∂ci
= −(Fj(cj − djXj) fi(ci − diXi)

+

∫ ∞
0

fj(e+ cj − djXj) fi(e+ ci − diXi) de) (50)

∂p(Y = i|X)

∂cj
=

∫ ∞
0

fj(e+ cj − djXj)fi(e+ ci − diXi) de (51)

From these equations, it is clear that:

∂piX
∂di

= −Xi
∂piX
∂ci

∂piX
∂dj

= −Xj
∂piX
∂cj

(52)

where we have used the notation piX for p(Y = i|X). These equations are equivalent to equations 43, above.
These first partial derivatives do not appear to permit further simplification. Computing the second partial derivatives from equations

48 and 49 and, subsequently, demonstrating that the eigenvalues of the Hessian (equation 42) are non-positive, appears to require con-
siderable further algebraic manipulation. These results highlight the challenges with demonstrating the concavity of the log-likelihood
function.
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D Proof of results on model optimality

In this section, we derive various results regarding optimal decision surfaces for the m-ADC model.

D.1 Optimal decision surfaces are hyperplanes of constant posterior odds ratio

We define the following relations (to be used in our derivation) for a stimulus detection task (e.g.,Figure 1A):

λkl = Ckl − C0
l (53)

Li0(Ψ) =
Nm(Ψ|Xi = 1)

Nm(Ψ|Xk = 0 ∀k)
(54)

Λi0(Ψ) =
pi
p0
Li0 (55)

where Ckl represents the cost of responding to location k when a stimulus occurred at location l; C0
l represents the cost of giving

a NoGo response, when a stimulus occurred at location l; λkl represents the cost of responding to location k relative to giving a NoGo
response, when a stimulus occurred at location l; Li0(Ψ) is the likelihood ratio corresponding to a stimulus at location i relative to no
stimulus, and Λi0(Ψ) is the posterior odds ratio given by multiplying the likelihood ratio by the prior odds ratio of a stimulus at location
i relative to no stimulus: pi/p0 = p(Xj = 1)/p(Xi = 0 ∀ i). We note that, for variables C and λ, non-zero subscripts refer to the
location of stimulus, and non-zero superscripts to the location of response. A subscript of zero (e.g., Ck0 ) denotes the no-stimulus event
(catch trial), whereas a superscript of zero (e.g., C0

k) denotes a NoGo response.
The general form of optimal decision surfaces for maximizing average utility (or minimizing average risk), for additive signals and

noise, obey the following relations (Middleton & Meter, 1955, equations 16-17):

Lk(Ψ) = Ll(Ψ); Lk(Ψ) = 0 ∀ k, l ∈ {1, . . . ,m}, k 6= l

where:

Lk = λk0 +

m∑
i=1

λki Λi(Ψ) (56)

These hypersurfaces enclose m + 1 distinct decision domains corresponding to each of the m response alternatives and the NoGo
response.

We can rewrite these equations as:

λk0 +

m∑
i=1

λki Λi0(Ψ) = λl0 +

m∑
i=1

λliΛi0(Ψ) k 6= l (57)

λk0 +

m∑
i=1

λki Λi0(Ψ) = 0 (58)

Substituting for the relative costs, λ, in terms of the absolute costs, C, yields:

Ck0 − C0
0 +

m∑
i=1

(Cki − C0
i )Λi0(Ψ) = Cl0 − C0

0 +

m∑
i=1

(Cli − C0
i )Λi0(Ψ) k 6= l (59)

Ck0 − C0
0 +

m∑
i=1

(Cki − C0
i )Λi(Ψ) = 0 (60)
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These equations can be further simplified as:

Ck0 +

m∑
i=1

Cki Λi0(Ψ) = Cl0 +

m∑
i=1

CliΛi0(Ψ) (61)

Ck0 +

m∑
i=1

Cki Λi0(Ψ) = C0
0 +

m∑
i=1

C0
i Λi0(Ψ) (62)

Our assumption regarding costs (Methods) can be expressed analytically as:

Ckj = Clj ∀j, k, l ∈ {0, . . . ,m}; k 6= j, l 6= j (63)

Incorporating this assumption, equation 61 simplifies to:

(Ckk − Clk)Λk0(Ψ) = (Cll − Ckl )Λl0(Ψ) (64)

Λk0(Ψ)

Λl0(Ψ)
=
Cll − Ckl
Ckk − Clk

(65)

Λkl(Ψ) = βkl (66)

where Λkl(Ψ) = Λk0(Ψ)
Λl0(Ψ) = pk

pl

Nm(Ψ|Xk=1)
Nm(Ψ|Xl=1) is the posterior odds ratio of a stimulus at location k relative to a stimulus at location l

and βkl = (Cll − Ckl )/(Ckk − Clk).
Incorporating the assumption from equation 63, equation 62 simplifies to:

Ck0 + CkkΛk0 = C0
0 + C0

kΛk0 (67)

Λk0 =
C0

0 − Ck0
Ckk − C0

k

(68)

Λk0 = βk0 (69)

Thus, optimal decision surfaces (equations 66 and 69) are the surfaces (hyperplanes) of constant posterior odds ratio (isosurfaces)
for each pair of stimulus events (Λkl) and for each stimulus vs. the no-stimulus event (Λk0). The values of the constants (βkl or βk0)
that define the optimal decision surfaces for reporting a stimulus at a location k vs. one at another location l, depend on the relative
costs (or benefits) of correctly reporting a stimulus (hit) at that location, k (or l), vs. incorrectly reporting (misidentification) the other
location l (or k).

D.2 Optimal decision surfaces intersect at a point

Consider the optimal decision surfaces for detecting a stimulus at location i or location j vs. no stimulus. These are given by:

Ψ∗i di = logβi0 − log
pi
p0

+
d2
i

2

Ψ∗jdj = logβj0 − log
pj
p0

+
d2
j

2

where Ψ∗i and Ψ∗j represent optimal values of Ψi and Ψj specified by equation 7.
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Subtracting the two equations yields:

Ψ∗i di −Ψ∗jdj = logβi0 − logβj0 − log
pi
p0

+ log
pj
p0

+
d2
i

2
−
d2
j

2

= log
βi0
βj0
− log

pi
pj

+
d2
i − d2

j

2
(70)

The ratio of β-s term (first term on the right-hand-side of equation 70) can be expanded as:

βi0
βj0

=

(
C0

0 − Ci0
Cii − C0

i

)(
Cjj − C0

j

C0
0 − C

j
0

)
(71)

=

(
Cjj − C0

j

Cii − C0
i

)(
C0

0 − Ci0
C0

0 − C
j
0

)
(72)

From equation 63, Ci0 = Cj0 , so that (C0
0 − Ci0)/(C0

0 − C
j
0) = 1. In addition, from equation 63, C0

j = Cij and C0
i = Cji . Thus,

(Cjj − C0
j )/(Cii − C0

i ) = (Cjj − Cij)/(Cii − C
j
i ) = βij .

Thus, equation 70 becomes:

Ψ∗i di −Ψ∗jdj = logβij − log
pi
pj

+
d2
i − d2

j

2
(73)

Notice that the right-hand-side of this equation is identical with the right-hand-side of equation 8. Thus, these optimal values of
Ψ∗i and Ψ∗j for detecting a stimulus at location i or location j, respectively, in noise (equation 7) also lie on the optimal surfaces for
reporting a stimulus at location i versus a stimulus at location j (equation 8). This completes the proof demonstrating that optimal
decision surfaces defined by equation 7 and 8 intersect at a point.
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E Model for a discrimination task with a NoGo response

In this section, we derive the model equations for two-alternative discrimination task that incorporates a NoGo response.
In the conventional 2-AFC discrimination task, the observer indicates, for example, how a test (target) stimulus differs from

a standard stimulus (e.g., brighter versus dimmer, longer versus shorter, clockwise versus counterclockwise direction of rotation or
movement).

On the other hand, in a ternary choice 2-ADC discrimination task, the observer must, in addition, indicate if she/he perceives the
target stimulus to be the same as the standard by giving a NoGo response. For example, in a 2-ADC orientation discrimination task,
the observer must not only indicate whether a target stimulus differs in orientation from a standard, with a Go/NoGo response, but must
also indicate the direction of the difference as clockwise or counterclockwise (from the standard), with different Go responses.

We describe the 2-ADC discrimination model based on the length discrimination task of García-Pérez and Alcalá-Quintana (2011a)
(see main text for description), although, the model is generally applicable to other discrimination tasks (like the orientation discrimina-
tion task just described) as well.

In this model, independent decision variables ΨA and ΨB encode sensory evidence for the stimulus above and the stimulus below,
respectively. In the “L-configuration” the stimulus above is the test (vertical) stimulus, and the stimulus below is the standard (hori-
zontal). In the “inverted-L” configuration, the stimulus above is the standard (horizontal) and the stimulus below is the test (vertical)
stimulus.

Just as in the conventional 2-AFC design, the observer reports the longer stimulus (above or below) by comparing the perceived
lengths of each (relative values of ΨA− and ΨB ; biases in this decision are captured by the respective choice criteria (relative values of
cA and cB). The key exception to this rule is that the observer gives a NoGo response if the perceived length of both stimuli are within
a certain range of the point of subjective equality (gray region defined by the criteria cA and cB in Figure 7A).

Thus, the decision rule for the 2-ADC (discrimination) model is:

Y = 1 if (ΨA < −cB ∩ ΨA − cA > ΨB − cB) ∪

(−cB ≤ ΨA ≤ cA ∩ ΨB < −cA) ∪ (ΨA > cA ∩ ΨA − cA > ΨB − cB)

Y = 2 if (ΨB < −cA ∩ ΨB − cB > ΨA − cA) ∪

(−cA ≤ ΨB ≤ cB ∩ ΨA < −cB) ∪ (ΨB > cB ∩ ΨB − cB > ΨA − cA) (74)

Y = 0 if − cB ≤ ΨA ≤ cA ∩ −cA ≤ ΨB ≤ cB

where the designations Y = 0, 1, 2 correspond to the NoGo, A>B (above > below) and B>A (below > above) responses, respectively,
in Figure 7A. Such a decision rule implies that observers have internalized the point of subjective equality of the test stimulus to the
standard, a plausible assumption when the standard stimulus remains fixed throughout the experiment, and is well-known to the observers
beforehand (the length of the standard stimulus was fixed at 104 pixels in this task, and the authors, who were also the observers, were
presumably familiar with the standard stimulus).

In this model, the psychophysical function (perceived length) is a linear function of stimulus strength (physical length). Thus, the
sensitivity (dz) is linearly related to the physical length (x) of the stimulus as: dz(x) = βzx, where z = {s, t} represent, respectively
the standard (horizontal) and test (vertical) stimuli. The point of subjective equality (PSE, origin of the coordinate axes), is the physical
length of the test stimulus at which its perceived length becomes equal to that of the standard stimulus. Thus, ds(xs) = dt(PSE),
where xs is the length of the standard stimulus (104 pixels). Hence, βsxs = βtPSE or PSE = βsxs/βt.

The structural model is conceptually identical with that of the 2-ADC detection model.

ΨA = d(ξA) + εA ΨB = d(ξB) XB + εB (75)
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where d(ξA) and d(ξB) represent the difference between the perceived length of the stimulus above and below, respectively, from
the perceived length of the standard (ds(xs)) or, equivalently, at the point of subjective equality (dt(PSE)). Thus, when the (vertical)
test stimulus is presented above the (horizontal) standard (L configuration), ξA = xt, ξB = xs, d(ξA) = dt(xt) − dt(PSE) =

dt(xt) − ds(xs) and d(ξB) = ds(xs) − ds(xs) = 0 (because the horizontal/standard is always presented at its standard length).
Similarly, when the (vertical) test stimulus is presented below the (horizontal) standard (inverted-L configuration), ξA = xs, ξB = xt,
d(ξA) = 0, and d(ξB) = dt(xt)− ds(xs). For conciseness, we introduce the notation: ∆d = dt(xt)− ds(xs).

The model may be described, equivalently, as follows: The joint distribution of ΨA and ΨB are represented by a bivariate Gaussian
random variable Ψ = [ΨA,ΨB ] with mean ∆d and identity covariance matrix. The magnitude of ∆d varies with the length of the test
stimulus, xt, as |∆d| = ∆d; the change occurs along the x-axis when the the test stimulus is presented above the standard (L), or along
the y-axis, when the test stimulus is presented below the standard (inverted-L). Thus, ∆d = 0 when xt = PSE.

The response probabilities in this task may be computed by inspection of Figure 7A. For example, the probability of the response
Y = 1 (A>B) is the integral of the distribution of Ψ over the red region: the latter is all of the region below the oblique line ΨB−ΨA =

cB − cA, except for the area overlapping the NoGo response (gray) region. Similarly, the probability of the response Y = 2 (B>A) is
the integral over the blue region, which is all of the region above the oblique line, except for the area overlapping the NoGo response
(gray) region. The probability of a NoGo response (Y = 0) is simply the integral over the gray (rectangular) region.

p(Y = 1|∆d) =

∫ ∞
−∞

∫ ΨA+cB−cA

−∞
ϕ(Ψ; ∆d) dΨAdΨB −

∫ cA

−cB

∫ ΨA+cB−cA

−cA
ϕ(Ψ; ∆d) dΨAdΨB

p(Y = 2|∆d) =

∫ ∞
−∞

∫ ∞
ΨA+cB−cA

ϕ(Ψ; ∆d) dΨAdΨB −
∫ cA

−cB

∫ cB

ΨA+cB−cA
ϕ(Ψ; ∆d) dΨAdΨB (76)

p(Y = 0|∆d) =

∫ cB

−cA

∫ cA

−cB
ϕ(Ψ; ∆d) dΨAdΨB (77)

where we have used the notation ϕ to represent the bivariate normal distribution of the decision variable Ψ.
These equations may be readily modified for the 2-ADCX task, which incorporates an interaction among ΨA and ΨB .
In this case, the mean of Ψ varies with the length of the test stimulus as: ∆dX = [∆d, η ∆d], when the test stimulus is above the

standard (L configuration) or = [η∆d, ∆d] when the test stimulus is below the standard (inverted-L configuration), where, as before
∆d = |∆d| = βtxt− βsxs, and η is the parameter that captures the interaction. η is numerically equal to arctan(α), α being the angle
in the graphical illustration in Figure 7C, and reported in Table 1. Incorporating this value of ∆dX into equations 76 gives the response
probabilities in the 2-ADCX model.

There is considerable scope for future work, including extending the model to the multialternative case, and demonstrating optimal-
ity and identifiability of the parameters. In addition, the assumption regarding the subjects internalizing the point of subjective equality
works well for discrimination tasks with a well-known, fixed standard (as demonstrated by model fits), but would need to be amended
for more general tasks involving roving designs with interleaved standards of different strengths.
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F The m-AFC model with bias as a special case of the m-ADC model

In this section, we demonstrate that the m-AFC model with bias is a special case of the m-ADC model.
In the m-ADC model, if the decision variable never falls below the criterion at any location, the observer never provides a NoGo

response. This can be achieved by setting the criteria to very low (large negative) values. In this case the m-ADC model is identical with
an m-AFC model.

We denote as bi, the difference cm − ci, which we term the bias for location i relative to location m; by this definition, bm = 0.
Introducing these terms into equation system 15:

p(Y = i|ξ) =

∫ ∞
ci−d(ξi)

∏
k,k 6=i

Fk(e+ d(ξi)− d(ξk) + bi − bk) fi(e) de (78)

Formally, the m-ADC model reduces to the m-AFC model as the criteria are reduced to very low values (ci → −∞), while keeping
bi constant. Applying this limit to the above equation:

p(Y = i|ξ) =

∫ ∞
−∞

∏
k,k 6=i

Fk(e+ d(ξi)− d(ξk) + bi − bk) fi(e) de (79)

and p(Y = 0|ξ) = limck→−∞ Fk(ck − d(ξk)) = 0, or, the probability of a NoGo response is zero.
These equations describe a recently developed m-AFC model formulation that incorporates bias (DeCarlo, 2012). Thus, the m-

ADC model is a more general form of the m-AFC model.
Notice that such a model describes the behavior of an ideal observer (one who seeks to maximize success), when no catch trials

are incorporated into the task design. In this case, the prior probability of a catch trial is zero (p0 = 0) and according to equation 9,
limp0→0 Λj0 → −∞, so that cj → −∞, whereas Λij , which does not depend on p0, remains unchanged, as do the differences ci − cj
(and, hence, the bi-s). Thus, an ideal observer’s behavior switches naturally from an m-ADC model to an m-AFC model when catch
trials are excluded from the task design.

S-18



Sridharan, Steinmetz, Moore, & Knudsen

Supplemental Data: Figures and Tables
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Figure S1: Effect of varying sensitivities and criteria on 2-ADC response probabilities (A) Variation of the probability of response at location 1 with the
criterion at each location (for constant sensitivities, Table S2A). The probability of response to location 1, for a stimulus presented at location 1, decreases
monotonically with an increasing choice criterion (c1) at location 1 (solid red line) and increases monotonically with an increasing choice criterion (c2)
at location 2 (dashed red line). The same monotonic trends are observed when a stimulus is presented at location 2 (blue curves). (B) Variation of
the probability of response at location 1 with the sensitivity at each location (for constant criteria, Table S2A). The probability of response to location 1
increases monotonically with increasing sensitivity (d1) to a stimulus at location 1 (red), and decreases monotonically with increasing sensitivity (d2) to a
stimulus at location 2 (blue).
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Figure S2: Effect of varying psychophysical parameters and criteria on 2-ADC psychometric functions (A) (Left) Psychometric functions p(ξ) at location 1
as a function of stimulus contrast ξ at location 1. The family of curves (light gray to black) correspond to increasing values of asymptotic sensitivity dmax

at location 1. (Right) Same as in left panel, but psychometric functions at location 2 as a function of stimulus contrast at location 1. (Inset) Psychophysical
functions (d(ξ)) for increasing dmax (scale parameter). (B) Same as in (A), but psychometric functions for increasing values of half-max contrast ξ50
(shift parameter). (C) Same as in (A), but psychometric functions for increasing values of the exponent n (slope parameter). (D) Same as in (A), but
psychometric functions for increasing values of the criterion at location 1, c1. (E) Same as in (A), but psychometric functions for increasing values of the
criterion at location 2, c2.
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Figure S3: Bayesian estimation of model parameters with the Markov-Chain Monte Carlo algorithm (A-B) Markov-chain Monte-Carlo (MCMC, Metropolis
sampling) algorithm for estimating perceptual sensitivity (A) and choice criterion (B) at each location from simulated response counts in the two-alternative
detection task (Table S2B). For various initial guesses (colored diamonds-s), the Markov chain converged reliably to identical values of sensitivity and
criterion at each location (black circles). Colored lines: Markov chains during MCMC runs for different initial guesses. (C) Evolution of the values of
sensitivity (upper panel) or criterion (lower panel) at each location during a particular MCMC run (magenta data in panels C-D) for location 1 (red) or
location 2 (blue). Gray bar: burn-in period (1000 iterations). (D) The chi-squared error function (upper panel) decreased steadily, and the log-likelihood
increased (lower panel) over successive iterations of the MCMC run. (E) Stationary (posterior) distributions (circles) of the sensitivity (left panel) and
criterion (right panel) values at each location for the MCMC run (panel E). These distributions were used to construct standard errors and 95% credible
intervals for the parameters (Table S2C). Red data: location 1; blue data: location 2. Lines: Gaussian fits to each distribution.
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Table S1. Stimulus-response contingency table for 2-AFC and 2-ADC tasks. 

A. 2x2 stimulus-response contingency table for a 2-AFC (Yes/No) task. 

                      Response 

 

Stimulus 

Go response @ 
 Loc 1 NoGo response 

Stimulus 
@  Loc 1 Hit (HR) Miss (MR) 

Catch 
(No stimulus) False-alarm (FA) Correct rejection 

(CR) 

 

 

B. 3x3 stimulus-response contingency table for a 2-ADC task. 

                  Response 

 

Stimulus 

Go response @  
Loc 1 

Go response @  
Loc 2 

NoGo response 

Stimulus 
@  Loc 1 

Hit (HR1) Misidentification 
(incorrect)  

Miss (MR1) 

Stimulus 
@  Loc 2 

Misidentification 
(incorrect) 

Hit (HR2) Miss (MR2) 

Catch 
(No stimulus) 

False-alarm (FA1) False-alarm (FA2) Correct rejection (CR) 

 

In 2-AFC (Yes/No) tasks there is only one false-alarm: a Go response during catch trials (FA). In addition to 
this, another type of false-alarm response can occur in 2-ADC tasks: a Go response at a location when a 
stimulus was presented at the opposite location (gray shaded cells).



Table S2. Simulated parameter recovery with MLE and MCMC. 

A. Parameters used in the simulation. 

Parameter Location 1 Location 2 

sensitivity d1 = 1.0 d2 = 1.0 

criterion c1 = -0.25 c2 = 0.75 

noise ε1 = N(0, 1) ε2 = N(0, 1) 

stimulus prior probability p1 = 0.25 p2 = 0.25 

 

B. Simulated contingency table of response counts (N = 4000 trials from 20 simulated runs). 

                  Response 

 

Stimulus 

Go response @ 
Loc 1 

Go response @ 
Loc 2 

NoGo response 

Stimulus 

@  Loc 1 
871 66 63 

Stimulus 

@  Loc 2 
422 414 164 

Catch 

(No stimulus) 
1122 263 615 

 

C.  Sensitivities and criteria recovered with maximum likelihood (MLE) and Bayesian (Markov Chain Monte 
Carlo) estimation procedures. 

Parameter MLE (mean ±  SE)  Bayesian (mean ± SE)  95% CI 

sensitivity 
d1 = 1.07 ± 0.06 

d2 = 0.99 ± 0.06 

d1 = 1.07 ± 0.08 

d2 = 0.98 ± 0.08 

d1: 0.98 − 1.16 

d2: 0.89 − 1.08 

criterion 
c1 = -0.27 ± 0.03 

c2 = 0.75 ± 0.04 

c1 = -0.27 ± 0.03 

c2 = 0.75 ± 0.05 

c1: -0.30 − -0.21 

c2: 0.67 − 0.81 

SE: standard error, CI: credible intervals



 Table S3. Maximum likelihood (ML) estimates of the psychometric function with and without 
accounting for bias. 

A. Parameters used in the simulation of a 2-ADC model with bias (c1≠c2). 

Parameter Location 1 Location 2 

sensitivity 

dmax = 2.5 

d1(ξ 1)        n = 2.0 

c50 = 0.35 

dmax = 2.5 

d2(ξ 2)        n = 2.0 

c50 = 0.35 

criterion c1 = 0.1 c2 = 0.7 

noise ε1 = N(0, 1) ε2 = N(0, 1) 

stimulus prior probability p1 = 0.25 p2 = 0.25 

 

B. ML estimates of 2-ADC psychometric parameters with and without accounting for bias. 

Parameter MLE with bias  
(mean ±  SE)  

MLE without bias  
(mean ±  SE)  

sensitivity 

dmax = 2.48 ± 0.03 

d1(ξ 1)            n = 2.01 ± 0.05 

c50 = 0.34 ± 0.006 

 

dmax = 2.49 ± 0.03 

d2(ξ 2)            n = 2.03 ± 0.04 

c50 = 0.35 ± 0.005 

dmax = 3.03 ± 0.05 

d1(ξ 1)             n = 1.69 ± 0.04 

c50 = 0.33 ± 0.008 

 

dmax = 2.49 ± 0.03 

d2(ξ 2)             n = 2.95 ± 0.07 

c50 = 0.38 ± 0.004 

criterion 
c1 = 0.10 ± 0.002 

c2 = 0.71 ± 0.003 

c1 = 0.35 ± 0.002 

c2 = 0.35 ± 0.002 
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